226 research outputs found
TRAP1 chaperone protein mutations and autoinflammation
We identified a consanguineous kindred, of three affected children with severe autoinflammation, resulting in the death of one sibling and allogeneic stem cell transplantation in the other two. All three were homozygous for MEFV p.S208C mutation; however, their phenotype was more severe than previously reported, prompting consideration of an oligogenic autoinflammation model. Further genetic studies revealed homozygous mutations in TRAP1, encoding the mitochondrial/ER resident chaperone protein tumour necrosis factor receptor associated protein 1 (TRAP1). Identification of a fourth, unrelated patient with autoinflammation and compound heterozygous mutation of TRAP1 alone facilitated further functional studies, confirming the importance of this protein as a chaperone of misfolded proteins with loss of function, which may contribute to autoinflammation. Impaired TRAP1 function leads to cellular stress and elevated levels of serum IL-18. This study emphasizes the importance of considering digenic or oligogenic models of disease in particularly severe phenotypes and suggests that autoinflammatory disease might be enhanced by bi-allelic mutations in TRAP1
Analysis of Nigerians with Apparently Sporadic Parkinson Disease for Mutations in LRRK2, PRKN and ATXN3
Several genetic variations have been associated with Parkinson disease in different populations over the past few years. Although a considerable number of worldwide populations have been screened for these variants, results from Sub-Saharan populations are very scarce in the literature. In the present report we have screened a cohort of Parkinson disease patients (n = 57) and healthy controls (n = 51) from Nigeria for mutations in the genes PRKN, LRRK2 and ATXN3. No pathogenic mutations were found in any of the genes. Hence, common pathogenic mutations in these genes, observed in several different populations, are not a frequent cause of Parkinson disease in Nigeria
The LRRK2 Arg1628Pro variant is a risk factor for Parkinson's disease in the Chinese population
The c.G4883C variant in the leucine-rich repeat kinase 2 (LRRK2) gene (protein effect: Arg1628Pro) has been recently proposed as a second risk factor for sporadic Parkinson's disease in the Han Chinese population (after the Gly2385Arg variant). In this paper, we analyze the Arg1628Pro variant and the associated haplotype in a large sample of 1,337 Han subjects (834 patients and 543 controls) ascertained from a single referral center in Taiwan. In our sample, the Arg1628Pro allele was more frequent among patients (3.8%) than among controls (1.8%; p = 0.004, OR 2.13, 95% CI 1.29-3.52). Sixty heterozygous and two homozygous carriers of the Arg1628Pro variant were identified among the patients, of which only one was also a carrier of the LRRK2 Gly2385Arg variant. We also show that carriers of the Arg1628Pro variant share a common, extended haplotype, suggesting a founder effect. Parkinson's disease onset age was similar in patients who carried the Arg1628Pro variant and in those who did not carry it. Our data support the contention that the Arg1628Pro variant is a second risk factor for Parkinson's disease in the Han Chinese population. Adding the estimated effects of Arg1628Pro (population attributable risk [PAR] ∼4%) and Gly2385Arg variants (PAR ∼6%) yields a total PAR of ∼10%
LRRK2 in Parkinson's disease – drawing the curtain of penetrance: a commentary
Parkinson's disease is the most common neurodegenerative movement disorder and affects about 2% of the population over the age of 60 years. In 2004, mutations in the LRRK2 gene were first described and turned out to be the most frequent genetic cause of familial and sporadic Parkinson's disease and may account for up to 40% of patients in distinct populations. Based on these findings, Latourelle and colleagues show that the penetrance of the most common LRRK2 mutation is higher in patients with familial compared with sporadic Parkinson's disease and identified a substantial number of affected relatives of mutation carriers not presenting with a LRRK2 mutation themselves. This commentary discusses the role of genetic and/or environmental susceptibility factors modulating the expressivity of the disease trait, how these factors may contribute to the phenomenon of phenocopies in genetically defined Parkinson's disease pedigrees, and how the findings of Latourelle and colleagues, published this month in BMC Medicine, relate to current concepts of genetic counselling
A common genetic factor for Parkinson disease in ethnic Chinese population in Taiwan
BACKGROUND: Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized clinically by resting tremor, bradykinesia, postural instability and rigidity. The prevalence of PD is approximately 2% of the population over 65 years of age and 1.7 million PD patients (age ≥ 55 years) live in China. Recently, a common LRRK2 variant Gly2385Arg was reported in ethnic Chinese PD population in Taiwan. We analyzed the frequency of this variant in our independent PD case-control population of Han Chinese from Taiwan. METHODS: 305 patients and 176 genetically unrelated healthy controls were examined by neurologists and the diagnosis of PD was based on the published criteria. The region of interest was amplified with standard polymerase chain reaction (PCR). PCR fragments then were directly sequenced in both forward and reverse directions. Differences in genotype frequencies between groups were assessed by the X(2 )test, while X(2 )analysis was used to test for the Hardy-Weinberg equilibrium. RESULTS: Of the 305 patients screened we identified 27 (9%) with heterozygous G2385R variant. This mutation was only found in 1 (0.5%) in our healthy control samples (odds ratio = 16.99, 95% CI: 2.29 to 126.21, p = 0.0002). Sequencing of the entire open reading frame of LRRK2 in G2385R carriers revealed no other variants. CONCLUSION: These data suggest that the G2385R variant contributes significantly to the etiology of PD in ethnic Han Chinese individuals. With consideration of the enormous and expanding aging Chinese population in mainland China and in Taiwan, this variant is probably the most common known genetic factor for PD worldwide
Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients
BACKGROUND: Fibroblast growth factor 20 (FGF20) is a neurotrophic factor preferentially expressed in the substantia nigra of rat brain and could be involved in dopaminergic neurons survival. Recently, a strong genetic association has been found between FGF20 gene and the risk of suffering from Parkinson's disease (PD). Our aim was to replicate this association in two independent populations. METHODS: Allelic, genotypic, and haplotype frequencies of four biallelic polymorphisms were assessed in 151 sporadic PD cases and 186 controls from Greece, and 144 sporadic PD patients and 135 controls from Finland. RESULTS: No association was found in any of the populations studied. CONCLUSION: Taken together, these findings suggest that common genetic variants in FGF20 are not a risk factor for PD in, at least, some European populations
Modeling Parkinson’s Disease Using Induced Pluripotent Stem Cells
Our understanding of the underlying molecular mechanism of Parkinson’s disease (PD) is hampered by a lack of access to affected human dopaminergic (DA) neurons on which to base experimental research. Fortunately, the recent development of a PD disease model using induced pluripotent stem cells (iPSCs) provides access to cell types that were previously unobtainable in sufficient quantity or quality, and presents exciting promises for the elucidation of PD etiology and the development of potential therapeutics. To more effectively model PD, we generated two patient-derived iPSC lines: a line carrying a homozygous p.G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene and another carrying a full gene triplication of the α-synuclein encoding gene, SNCA. We demonstrated that these PD-linked pluripotent lines were able to differentiate into DA neurons and that these neurons exhibited increased expression of key oxidative stress response genes and α-synuclein protein. Moreover, when compared to wild-type DA neurons, LRRK2-G2019S iPSC-derived DA neurons were more sensitive to caspase-3 activation caused by exposure to hydrogen peroxide, MG-132, and 6-hydroxydopamine. In addition, SNCA-triplication iPSC-derived DA neurons formed early ubiquitin-positive puncta and were more sensitive to peak toxicity from hydrogen peroxide-induced stress. These aforementioned findings suggest that LRRK2-G2019S and SNCA-triplication iPSC-derived DA neurons exhibit early phenotypes linked to PD. Given the high penetrance of the homozygous LRRK2 mutation, the expression of wild-type α-synuclein protein in the SNCA-triplication line, and the clinical resemblance of patients afflicted with these familial disorders to sporadic PD patients, these iPSC-derived neurons may be unique and valuable models for disease diagnostics and development of novel pharmacological agents for alleviation of relevant disease phenotypes
Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor
Activation of the epidermal growth factor receptor (EGFR) not only initiates multiple signal-transduction pathways, including the MAP kinase (MAPK) pathway, but also triggers trafficking events that relocalize receptors from the cell surface to intracellular endocytic compartments. In this paper, we demonstrate that leucine-rich repeat kinase LRRK1, which contains a MAPKKK-like kinase domain, forms a complex with activated EGFR through an interaction with Grb2. Subsequently, LRRK1 and epidermal growth factor (EGF) are internalized and co-localized in early endosomes. LRRK1 regulates EGFR transport from early to late endosomes and regulates the motility of EGF-containing early endosomes in a manner dependent on its kinase activity. Furthermore, LRRK1 serves as a scaffold facilitating the interaction of EGFR with the endosomal sorting complex required for transport-0 complex, thus enabling efficient sorting of EGFR to the inner vesicles of multivesicular bodies. Our findings provide the first evidence that a MAPKKK-like protein regulates the endosomal trafficking of EGFR
Efficient Allele-Specific Targeting of LRRK2 R1441 Mutations Mediated by RNAi
Since RNA interference (RNAi) has the potential to discriminate between single nucleotide changes, there is growing interest in the use of RNAi as a promising therapeutical approach to target dominant disease-associated alleles. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to dominantly inherited Parkinson's disease (PD). We focused on three LRRK2 mutations (R1441G/C and the more prevalent G2109S) hoping to identify shRNAs that would both recognize and efficiently silence the mutated alleles preferentially over the wild-type alleles. Using a luciferase-based reporter system, we identified shRNAs that were able to specifically target the R1441G and R1441C alleles with 80% silencing efficiency. The same shRNAs were able to silence specifically mRNAs encoding either partial or full-length mutant LRRK2 fusion proteins, while having a minimal effect on endogenous wild-type LRRK2 expression when transfected in 293FT cells. Shifting of the mutant recognition site (MRS) from position 11 to other sites (4 and 16, within the 19-mer window of our shRNA design) reduced specificity and overall silencing efficiency. Developing an allele-specific RNAi of G2019S was problematic. Placement of the MRS at position 10 resulted in efficient silencing of reporters (75–80%), but failed to discriminate between mutant and wild-type alleles. Shifting of the MRS to positions 4, 5, 15, 16 increased the specificity of the shRNAs, but reduced the overall silencing efficiency. Consistent with previous reports, these data confirm that MRS placement influences both allele-specificity and silencing strength of shRNAs, while further modification to hairpin design or MRS position may lead to the development of effective G2019S shRNAs. In summary, the effective shRNA against LRRK2 R1441 alleles described herein suggests that RNAi-based therapy of inherited Parkinson's disease is a viable approach towards developing effective therapeutic interventions for this serious neurodegenerative disease
- …