2,782 research outputs found

    Experimental demonstration of evanescent coupling from optical fibre tapers to photonic crystal waveguides

    Get PDF
    Experimental results demonstrating nearly complete mode-selective evanescent coupling to a photonic crystal waveguide from an optical fibre taper are presented. Codirectional coupling with 98% maximum power transfer to a photonic crystal waveguide of length 65 ÎĽm and with a coupling bandwidth of 20 nm is realised

    Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities

    Get PDF
    The quality factors of modes in nearly identical GaAs and Al_{0.18}Ga_{0.82}As microdisks are tracked over three wavelength ranges centered at 980 nm, 1460 nm, and 1600 nm, with quality factors measured as high as 6.62x10^5 in the 1600-nm band. After accounting for surface scattering, the remaining loss is due to sub-bandgap absorption in the bulk and on the surfaces. We observe the absorption is, on average, 80 percent greater in AlGaAs than in GaAs and in both materials is 540 percent higher at 980 nm than at 1600nm.Comment: 4 pages, 2 figures, 1 table, minor changes to disucssion of Qrad and Urbach tai

    Self-optimization of optical confinement in ultraviolet photonic crystal slab laser

    Get PDF
    We studied numerically and experimentally the effects of structural disorder on the performance of ultraviolet photonic crystal slab lasers. Optical gain selectively amplifies the high-quality modes of the passive system. For these modes, the in-plane and out-of-plane leakage rates may be automatically balanced in the presence of disorder. The spontaneous optimization of in-plane and out-of-plane confinement of light in a photonic crystal slab may lead to a reduction of the lasing threshold.Comment: 5 pages, 5 figure

    Mutator Dynamics on a Smooth Evolutionary Landscape

    Full text link
    We investigate a model of evolutionary dynamics on a smooth landscape which features a ``mutator'' allele whose effect is to increase the mutation rate. We show that the expected proportion of mutators far from equilibrium, when the fitness is steadily increasing in time, is governed solely by the transition rates into and out of the mutator state. This results is a much faster rate of fitness increase than would be the case without the mutator allele. Near the fitness equilibrium, however, the mutators are severely suppressed, due to the detrimental effects of a large mutation rate near the fitness maximum. We discuss the results of a recent experiment on natural selection of E. coli in the light of our model.Comment: 4 pages, 3 figure

    Feasibility of detecting single atoms using photonic bandgap cavities

    Get PDF
    We propose an atom-cavity chip that combines laser cooling and trapping of neutral atoms with magnetic microtraps and waveguides to deliver a cold atom to the mode of a fiber taper coupled photonic bandgap (PBG) cavity. The feasibility of this device for detecting single atoms is analyzed using both a semi-classical treatment and an unconditional master equation approach. Single-atom detection seems achievable in an initial experiment involving the non-deterministic delivery of weakly trapped atoms into the mode of the PBG cavity.Comment: 11 pages, 5 figure

    Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic

    Get PDF
    An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements

    Photonic band structure of highly deformable, self-assembling systems

    Full text link
    We calculate the photonic band structure at normal incidence of highly deformable, self-assembling systems - cholesteric elastomers subjected to external stress. Cholesterics display brilliant reflection and lasing owing to gaps in their photonic band structure. The band structure of cholesteric elastomers varies sensitively with strain, showing new gaps opening up and shifting in frequency. A novel prediction of a total band gap is made, and is expected to occur in the vicinity of the previously observed de Vries bandgap, which is only for one polarisation

    Reconceptualizing CSR in the media industry as relational accountability

    Get PDF
    In this paper, we reconceptualize CSR in the media industries by combining empirical data with theoretical perspectives emerging from the communication studies and business ethics literature. We develop a new conception of what corporate responsibility in media organizations may mean in real terms by bringing Bardoel and d’Haenens’ (European Journal of Communication 19 165–194 2004) discussion of the different dimensions of media accountability into conversation with the empirical results from three international focus group studies, conducted in France, the USA and South Africa. To enable a critical perspective on our findings, we perform a philosophical analysis of its implications for professional, public, market, and political accountability in the media, drawing on the insights of Paul Virilio. We come to the conclusion that though some serious challenges to media accountability exist, the battle for responsible media industries is not lost. In fact, the speed characterizing the contemporary media environment may hold some promise for fostering the kind of relational accountability that could underpin a new understanding of CSR in the media

    From microscopic to macroscopic descriptions of cell\ud migration on growing domains

    Get PDF
    Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs
    • …
    corecore