90 research outputs found

    Ruthenium N-heterocyclic carbene complexes: C-H activation and catalysis

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Defective phagocyte association during infection of Galleria mellonella with Yersinia pseudotuberculosis is detrimental to both insect host and microbe

    Get PDF
    Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated how Y. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe–phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system

    Signaling, Polyubiquitination, Trafficking, and Inclusions: Sequestosome 1/p62's Role in Neurodegenerative Disease

    Get PDF
    Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome. P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases. Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed

    Elizabeth Spencer - b. 1921

    Get PDF
    Elizabeth Spencer has won loyal readers and prestigious literary prizes for her many short stories, collections of short fiction, and novels. Praised by Eudora Welty for her “cool detachment,” Spencer evokes the family and community relationships of the American South with certainty and compassion born of her personal knowledge as a native of Mississippi and a long-time resident of North Carolina. Drawing also on her experiences in Italy and Canada, Spencer demonstrates the range of her socia..

    Declaring Racism a Public Health Crisis in the United States: Cure, Poison, or Both?

    Get PDF
    Declaring racism a public health crisis has the potential to shepherd meaningful anti-racism policy forward and bridge long standing divisions between policy-makers, community organizers, healers, and public health practitioners. At their best, the declarations are a first step to address long standing inaction in the face of need. At their worst, the declarations poison or sedate grassroots momentum toward anti-racism structural change by delivering politicians unearned publicity and slowing progress on health equity. Declaring racism as a public health crisis is a tool that must be used with clarity and caution in order to maximize impact. Key to holding public institutions accountable for creating declarations is the direct involvement of Black and Indigenous People of Color (BIPOC) led groups and organizers. Sharing power, centering their voices and working in tandem, these collaborations ensure that declarations push for change from the lens of those most impacted and authentically engage with the demands of communities and their legacies. Superficial diversity and inclusion efforts that bring BIPOC people and organizers into the conversation and then fail to implement their ideas repeat historical patterns of harm, stall momentum for structural change at best, and poison the strategy at worst. In this paper we will examine three declarations in the United States and analyze them utilizing evaluative criteria aligned with health equity and anti-racism practices. Finally, we offer recommendations to inform anti-racist public health work for meaningful systematic change toward decentralization and empowerment of communities in their health futures

    Knockdown resistance mutations predict DDT resistance and pyrethroid tolerance in the visceral leishmaniasis vector Phlebotomus argentipes

    Get PDF
    BACKGROUND:Indoor residual spraying (IRS) with DDT has been the primary strategy for control of the visceral leishmaniasis (VL) vector Phlebotomus argentipes in India but efficacy may be compromised by resistance. Synthetic pyrethroids are now being introduced for IRS, but with a shared target site, the para voltage-gated sodium channel (VGSC), mutations affecting both insecticide classes could provide cross-resistance and represent a threat to sustainable IRS-based disease control. METHODOLOGY/PRINCIPAL FINDINGS:A region of the Vgsc gene was sequenced in P. argentipes from the VL hotspot of Bihar, India. Two knockdown resistance (kdr) mutations were detected at codon 1014 (L1014F and L1014S), each common in mosquitoes, but previously unknown in phlebotomines. Both kdr mutations appear largely recessive, but as homozygotes (especially 1014F/F) or as 1014F/S heterozygotes exert a strong effect on DDT resistance, and significantly predict survivorship to class II pyrethroids in short-duration bioassays. The mutations are present at high frequency in wild P. argentipes populations from Bihar, with 1014F significantly more common in higher VL areas. CONCLUSIONS/SIGNIFICANCE:The Vgsc mutations detected appear to be a primary mechanism underlying DDT resistance in P. argentipes and a contributory factor in reduced pyrethroid susceptibility, suggesting a potential impact if P. argentipes are subjected to suboptimal levels of pyrethroid exposure, or additional resistance mechanisms evolve. The assays to detect kdr frequency changes provide a sensitive, high-throughput monitoring tool to detecting spatial and temporal variation in resistance in P. argentipes

    Comparative analysis of small-molecule limk1/2 inhibitors: chemical synthesis, biochemistry, and cellular activity

    Get PDF
    LIM domain kinases 1 and 2 (LIMK1 and LIMK2) regulate actin dynamics and subsequently key cellular functions such as proliferation and migration. LIMK1 and LIMK2 phosphorylate and inactivate cofilin leading to increased actin polymerization. As a result, LIMK inhibitors are emerging as a promising treatment strategy for certain cancers and neurological disorders. High-quality chemical probes are required if the role of these kinases in health and disease is to be understood. To that end, we report the results of a comparative assessment of 17 reported LIMK1/2 inhibitors in a variety of in vitro enzymatic and cellular assays. Our evaluation has identified three compounds (TH-257, LIJTF500025, and LIMKi3) as potent and selective inhibitors suitable for use as in vitro and in vivo pharmacological tools for the study of LIMK function in cell biology

    The effects of spatial legacies following shifting management practices and fire on boreal forest age structure

    Get PDF
    Forest age structure and its spatial arrangement are important elements of sustainable forestry because of their effects on biodiversity and timber availability. Forest management objectives that include specific forest age structure may not be easily attained due to constraints imposed by the legacies of historical management and natural disturbance. We used a spatially explicit stochastic model to explore the synergetic effects of forest management and fire on boreal forest age structure. Specifically, we examined (1) the duration of spatial legacies of different management practices in the boreal forest, (2) how multiple shifts in management practices affect legacy duration and the spatial trajectories of forest age structure, and (3) how fire influences legacy duration and pattern development in combination with harvesting. Results based on 30 replicates of 500 years for each scenario indicate that (1) spatial legacies persist over 200 years and the rate at which legacies are overcome depends on whether new management targets are in synchrony with existing spatial pattern; (2) age specific goals were met faster after multiple management shifts due to the similar spatial scale of the preceding management types; (3) because large fires can erase the spatial pattern created by smaller disturbances, scenarios with fire had shorter lags than scenarios without fire. These results suggest that forest management goals can be accelerated by applying management at a similar spatial scale as existing spatial patterns. Also, management planning should include careful consideration of historical management as well as current and likely future disturbances
    corecore