121 research outputs found

    Managing an Integrated Project - Experiences from the Realigning Agriculture to Improve Nutrition project

    Get PDF
    Over the last number of decades there has been a tendency within the international development sector to privilege the management of projects in a siloed manner. This translates to projects managed in a narrow way according to pre-defined parameters of say the education or health sectors. As a project manager you are held accountable for delivering education or health outputs. A shift in donor funding to focus on development projects that are considered easy to administer partly explains this siloed approach to project management within the development sector. However, there is a gradual kick back against the siloed project management approach. Instead we are seeing a return to an integrated managerial approach.An integrated managerial approach involves bringing together various technical specialists to work on common objectives in a coordinated and collaborative manner. A growing number of development actors such as Concern Worldwide are embracing this ‘new approach’. For Concern Worldwide integrated projects are interventions which address multiple needs through coordination across a variety of sectors and with the participation of all relevant stakeholders to achieve common goals. Integrated projects are about sector projects working together with the same target group in the same area in a coordinated manner. This paper reflects on Concern’s experience and evidence to date with integration drawing on the agency’s work in Zambia. The Realigning Agriculture to Improve Nutrition project in Zambia highlights the practical challenges and lessons of managing an integrated project. 

    A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion

    Get PDF
    International audienceCollections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of aMarkov chainMonte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of temperature profiles are calculated using surface air temperatures of a global climate model simulation. In the final case, 23 real boreholes from the United Kingdom, previously used for climatic reconstructions, are examined and the results compared with a local instrumental temperature series and the previous estimate derived from the same borehole data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic reconstruction purposes, at least without including other thermal processes in the forward model

    High speed CMOS imager with motion artifact supression and anti-blooming

    Get PDF
    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained

    Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings

    Get PDF
    This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat’s stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626N to 7552N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture

    Video analysis of the deformation and effective mass of gymnastics landing mats

    Get PDF
    Introduction: Landing mats that undergo a large amount of area deformation are now essential for the safe completion of landings from dismounts and vaults in gymnastics. The aim of this paper is to determine the effective mass, shock transmission time and deformation characteristics of a mat during impacts using high-speed video and hence improve the accuracy of measuring foot / mat contact forces during landing. To this end the same variables need to be accurately assessed using accelerometer and force plate data so that the high-speed video method can be validated. Methods: A 24 kg impactor with an attached accelerometer was dropped onto the sample mat from various heights. The surface deformation of the mat was recorded using high-speed video and force data were obtained from a force plate beneath the mat. Results: Impact velocities ranged from 4.3 ms-1 to 6.5 ms-1 resulting in maximum vertical deformations between 0.088 m and 0.118 m with corresponding volume deformation estimates ranging from 0.030 m3 to 0.044 m3. The delay between accelerometer and force plate readings at initial contact was approximately 7 ms whereas the delay between peak acceleration and peak force was 3 ms. The peak acceleration calculated from the video data was within 2.5 % of that recorded via the accelerometer. The effective mass of the mat being accelerated corresponded to a force that ranged from 481 N to 930 N and this cannot be ignored as it accounts for up to 12 % of the peak force. Conclusions: The acceleration estimates obtained from the high-speed video were combined with the effective mass estimates from the volume calculation to give peak calculated forces at the bottom of the mat to within -1.1% to +3.7% of the force recorded via the force plate. The use of high-speed video can be used to give data of sufficient accuracy for measuring foot / mat contact forces in gymnastics landings

    Image sensor with motion artifact supression and anti-blooming

    Get PDF
    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained

    Modelling a viscoelastic gymnastics landing mat during impact

    Get PDF
    Landing mats that undergo a large amount of area deformation are now essential for the safe completion of landings in gymnastics. The objective of this study was to develop an analytical model of a landing mat that reproduces the key characteristics of the mat-ground force during impact with minimal simulation runtime. A force plate and two high-speed video cameras were used to record the mat deformation during vertical drop testing of a 24 kg impactor. Four increasingly complex point mass spring-damper models, from a single mass-spring-damper system, Model 1, through to a 3 layer mass-spring-damper system, Model 4, were constructed using Matlab to model the mat’s behaviour during impact. A fifth model compromised of a 3 layer mass-spring-damper system was developed using visual Nastran 4D. The results showed that Models 4 and 5 were able to match the loading phase of the impact with simulation times of less than one second for Model 4 and 28 seconds for Model 5. Both Models 4 and 5 successfully reproduced the key force time characteristics of the mat-ground interface, such as peak forces, time of peak forces, inter-peak minima and initial rates of loading and could be incorporated into a gymnast-mat model

    The influence of simulation model complexity on the estimation of internal loading in gymnastics landings

    Get PDF
    Evaluating landing technique using a computer simulation model of a gymnast and landing mat could be a useful tool when attempting to assess injury risk. The aims of this study were: (1) to investigate whether a subject-specific torque-driven or a subject-specific muscle-driven model of a gymnast is better at matching experimental ground reaction forces and kinematics during gymnastics landings, (2) to calculate their respective simulation run times and (3) to determine what level of model complexity is required to assess injury risk. A subject-specific planar seven-link wobbling mass model of a gymnast and a multi-layer model of a landing mat were developed for this study. Subject-specific strength parameters were determined which defined the maximum voluntary torque/angle/angular velocity relationship about each joint. This relationship was also used to produce subject-specific ‘lumped’ muscle models for each joint. Kinetic and kinematic data were obtained during landings from backward and forward rotating gymnastics vaults. Both torque-driven and muscle-driven models were capable of producing simulated landings that matched the actual performances (with overall percentage differences between 10.1% and 18.2%). The torque-driven model underestimated the internal loading on joints and bones, resulting in joint reaction forces that were less than 50% of those calculated using the muscle-driven model. Simulation time increased from approximately 3 min (torque driven) to more than 10 min (muscle driven) as model complexity increased. The selection of a simulation model for assessing injury risk must consider the need for determining realistic internal forces as the priority despite increases in simulation run time

    Reducing ground reaction forces in gymnastics’ landings may increase internal loading

    Get PDF
    The aim of this study was to use a subject-specific seven-link wobbling mass model of a gymnast, and a multi-layer model of a landing mat, to determine landing strategies that minimise ground reaction forces (GRF) and internal forces. Subject-specific strength parameters were determined that defined the maximum voluntary torque/angle/angular velocity relationship at each joint. These relationships were used to produce subject-specific ‘lumped’ linear muscle models for each joint. Muscle activation histories were optimised using a Simplex algorithm to minimise GRF or bone bending moments for forward and backward rotating vault landings. Optimising the landing strategy to minimise each of the GRF reduced the peak vertical and horizontal GRF by 9% for the backward rotating vault and by 8% and 48% for the forward rotating vault, compared to a matching simulation. However, most internal loading measures (bone bending moments, joint reaction forces and muscle forces) increased compared to the matching simulation. Optimising the landing strategy to minimise the peak bone bending moments resulted in reduced internal loading measures, and in most cases reduced GRF. Bone bending moments were reduced by 27% during the forward rotating vault and by 2% during the backward rotating vault landings when compared to the matching simulations. It is possible for a gymnast to modify their landing strategy in order to minimise internal forces and lower GRF. However, using a reduction in GRF, due to a change in landing strategy, as a basis for a reduction in injury potential in vaulting movements may not be appropriate since internal loading can increase

    Sustaining Graduation: A Review of the CLM Programme in Haiti

    Get PDF
    The Haitian NGO Fonkoze, with the support of Concern Worldwide, has been implementing the Chemin Lavi Miyo (CLM) Graduation Programme since June 2007 which targets the extreme poor in Haiti. Early results were promising, but questions prevailed around the sustainability of benefits. To address these concerns a further round of data collection was undertaken amongst a group of participants four years after graduation. Using a poverty scorecard to record information on housing quality, ownership of assets, household income and livelihoods, it was possible to assess that the mean level of asset?holding remained higher than at baseline, but had slipped back slightly since graduation. Between graduation and the ex post survey 31 per cent continued on an upward trajectory, 39 per cent consolidated their position, but 30 per cent had slipped back considerably, suggesting the need for a more comprehensive social protection system than can be offered by an NGO?implemented programme
    • …
    corecore