12 research outputs found

    Association of Bacteroides acidifaciens relative abundance with high-fibre diet-associated radiosensitisation

    Get PDF
    Funding Information: This work was funded by Cancer Research UK Programme grant C5255/ A23755 and Wellcome Trust Investigator Award 209397/Z/17/Z. The funding body had no role in the design of the study; in the collection, analysis, and interpretation of data; or in the writing of the manuscript. Acknowledgements We thank Professor Simon Kroll and Dr. Anderson Ryan for their very helpful comments. We thank Dr. Jia-Yu Ke at Research Diets, Inc. for formulation of the mouse diets, Dr. Lisa Folkes for assistance with the faecal butyrate quantification, and Omega Bioservices (Georgia, USA) for the 16S rRNA gene sequencing on a MiSeq platform.Peer reviewedPublisher PD

    The Histone Deacetylase Inhibitor Romidepsin Spares Normal Tissues While Acting as an Effective Radiosensitizer in Bladder Tumors in Vivo

    Get PDF
    Funding Information: This work was funded by Cancer Research UK (CRUK; C5255/A23755). J.L.R. was funded by CRUK (project grant C15140/A19817). C.K.T. was funded by a CRUK DPhil Research Training and Support Grant, the Balliol College Alfred Douglas Stone Scholarship, and the University of Oxford Clarendon Fund. S.K. was funded by a CRUK/MRC Oxford Institute of Radiation Oncology CRUK studentship.Peer reviewedPublisher PD

    p97/VCP inhibition causes excessive MRE11-dependent DNA end resection promoting cell killing after ionizing radiation

    Get PDF
    Funding Information: This work was funded by Cancer Research UK (CRUK) program grant C5255/A23755 to A.E.K. Medical Research Council UK (MRC) program grant MC_PC 12001/1 (MC_UU_00001/1) and Breast Cancer Now (Grant No. 2019DecPR1406) to K.R. S.K. was supported by the MRC Oxford Institute of Radiation Oncology (OIRO) CRUK studentship. We thank Dr. Sovan Sarkar (Department of Oncology, University of Oxford) for generously providing DR-GFP U2OS cells. We thank Diogo Dias (Ludwig Cancer Research Institute, University of Oxford) for his technical advice on HR and SSA assays and assistance with the analysis. We thank Dr. Lisa Folkes and Alix Hampson for the high-performance liquid chromatography (HPLC) analysis of CB-5083 concentration in tissue extracts from CD-1 nude mice bearing subcutaneous RT112 tumors. We also thank the Oxford Radcliffe Biobank for providing us with human tissue sections.Peer reviewedPublisher PD

    Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity.

    Get PDF
    Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy

    Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity

    Get PDF
    Acknowledgements We thank Professor William Kim (University of North Carolina, Chapel Hill) for his generous gift of the UPPL1591 cell line. We thank Dr. Mark Hill (Department of Oncology, University of Oxford) for assistance with irradiation procedures, and Dr. Jia-Yu Ke and Dr. Vijay Indukuri (Research Diets, Inc.) for formulation of the mouse diets. We thank Dr. Graham Horgan (James Hutton Research Institute, Aberdeen) for statistical advice. We thank Grampian Biorepository at Aberdeen Royal Infirmary for providing the faecal samples from cancer patients.Peer reviewe

    Involvement of direct and indirect (bystander) cytotoxic effects in alpha-RIT of small volume peritoneal carcinomatosis using 213Bi- and ÂČÂčÂČPb-labeled mAbs

    No full text
    We investigated in vitro and in vivo the relative contribution of direct and indirect (bystander) effects in the therapeutic efficacy of 213Bi- and 212Pb-labeled mAbs used for treating small volume peritoneal carcinomatosis.JRC.G.I.5-Advanced Nuclear Knowledg

    MAPK14/p38α confers irinotecan resistance to TP53-defective cells by inducing survival autophagy.: MAPK14/p38α induces survival autophagy

    No full text
    International audienceRecently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy

    Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma.: Activated p38 and chemoresistance

    No full text
    International audienceDespite recent advances in the treatment of colon cancer, tumor resistance is a frequent cause of chemotherapy failure. To better elucidate the molecular mechanisms involved in resistance to irinotecan (and its active metabolite SN38), we established SN38-resistant clones derived from HCT-116 and SW48 cell lines. These clones show various levels (6- to 60-fold) of resistance to SN-38 and display enhanced levels of activated MAPK p38 as compared with the corresponding parental cells. Because four different isoforms of p38 have been described, we then studied the effect of p38 overexpression or downregulation of each isoform on cell sensivity to SN38 and found that both α and ÎČ isoforms are involved in the development of resistance to SN38. In this line, we show that cell treatment with SB202190, which inhibits p38α and p38ÎČ, enhanced the cytotoxic activity of SN38. Moreover, p38 inhibition sensitized tumor cells derived from both SN38-sensitive and -resistant HCT116 cells to irinotecan treatment in xenograft models. Finally, we detected less phosphorylated p38 in primary colon cancer of patients sensitive to irinotecan-based treatment, compared with nonresponder patients. This indicates that enhanced level of phosphorylated p38 could predict the absence of clinical response to irinotecan. Altogether, our results show that the p38 MAPK pathway is involved in irinotecan sensitivity and suggest that phosphorylated p38 expression level could be used as a marker of clinical resistance to irinotecan. They further suggest that targeting the p38 pathway may be a potential strategy to overcome resistance to irinotecan-based chemotherapies in colorectal cancer
    corecore