1,931 research outputs found

    Safety-zone layout design for a floating LNG-Fueled power plant in bunkering process

    Get PDF
    The use of natural gas (NG) as an energy source is increasing. This paper studies the safety-zone layout design of a floating power plant fueled by NG. Hazards from the unwanted release of liquefied NG (LNG) in bunkering or NG in operation always exist, and it is thus important to reduce the associated risk to an acceptable level. One engineering technique used to reduce this risk involves the design of a safety zone to prevent and minimize exposure to unwated release of LNG or NG that may occur during the bunkering process. Industry practices are available for the design of the layout of such safety-zones, but their applicability to floating power plants is uncertain, and a more intuitive approach is required. The objective of this study is to discuss the challenges of establishing safety zones on floating power plants by reviewing and comparing existing industrial practices and to propose a hybrid approach for the design of a safety-zone layout. The applicability of the proposed hybrid approach is discussed with an applied example

    A Preliminary Risk Assessment on the Development of a Small-Scaled Floating Power Plant

    Get PDF
    This paper introduces a preliminary risk assessment method carried out on a newly developed floating power plant. The small-scale floating power plant has been developed to provide electric power for areas on demand, and this is a kind of a new concept system which is not clearly classified in the maritime industry. To grant the feasibility for this novel system design, a set of risk assessment activities is essentially required, and in this context, a hazard identification (HAZID) study is conducted at the very early stage of the plant design. The aims of this HAZID study are to verify the inherent safety of the initial plant design and to provide any recommendations on the next design stages. For this purpose, the potential hazards are identified in view of personnel, structural, and asset effects in association with the operation of the power plant and all the identified hazards and relevant risks are assessed with the defined criteria using a simple risk matrix. As a result, the risk or safety level of the conceptual plant design is estimated, and some design changes are suggested to give a better balance between the safety and the cost of the plant system. Overall, this paper shows how the primitive risk assessment techniques are utilized as a practical engineering tool in the development of the marine system

    Business process improvement with the AB-BPM methodology

    Get PDF
    A fundamental assumption of Business Process Management (BPM) is that redesign delivers refined and improved versions of business processes. This assumption, however, does not necessarily hold, and any required compensatory action may be delayed until a new round in the BPM life-cycle completes. Current approaches to process redesign face this problem in one way or another, which makes rapid process improvement a central research problem of BPM today. In this paper, we address this problem by integrating concepts from process execution with ideas from DevOps. More specifically, we develop a methodology called AB-BPM that offers process improvement validation in two phases: simulation and AB tests. Our simulation technique extracts decision probabilities and metrics from the event log of an existing process version and generates traces for the new process version based on this knowledge. The results of simulation guide us towards AB testing where two versions (A and B) are operational in parallel and any new process instance is routed to one of them. The routing decision is made at runtime on the basis of the achieved results for the registered performance metrics of each version. Our routing algorithm provides for ultimate convergence towards the best performing version, no matter if it is the old or the new version. We demonstrate the efficacy of our methodology and techniques by conducting an extensive evaluation based on both synthetic and real-life data

    Two-phase stretching of molecular chains

    Full text link
    While stretching of most polymer chains leads to rather featureless force-extension diagrams, some, notably DNA, exhibit non-trivial behavior with a distinct plateau region. Here we propose a unified theory that connects force-extension characteristics of the polymer chain with the convexity properties of the extension energy profile of its individual monomer subunits. Namely, if the effective monomer deformation energy as a function of its extension has a non-convex (concave up) region, the stretched polymer chain separates into two phases: the weakly and strongly stretched monomers. Simplified planar and 3D polymer models are used to illustrate the basic principles of the proposed model. Specifically, we show rigorously that when the secondary structure of a polymer is mostly due to weak non-covalent interactions, the stretching is two-phase, and the force-stretching diagram has the characteristic plateau. We then use realistic coarse-grained models to confirm the main findings and make direct connection to the microscopic structure of the monomers. We demostrate in detail how the two-phase scenario is realized in the \alpha-helix, and in DNA double helix. The predicted plateau parameters are consistent with single molecules experiments. Detailed analysis of DNA stretching demonstrates that breaking of Watson-Crick bonds is not necessary for the existence of the plateau, although some of the bonds do break as the double-helix extends at room temperature. The main strengths of the proposed theory are its generality and direct microscopic connection.Comment: 16 pges, 22 figure

    Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED

    Full text link
    We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying \textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.Comment: 5 pages, 4 figures; includes Supporting Online Material of 6 pages with 5 figure

    Poor survival outcomes in HER2 positive breast cancer patients with low grade, node negative tumours

    Get PDF
    We present a retrospective analysis on a cohort of low-grade, node-negative patients showing that human epidermal growth factor receptor 2 (HER2) status significantly affects the survival in this otherwise very good prognostic group. Our results provide support for the use of adjuvant trastuzumab in patients who are typically classified as having very good prognosis, not routinely offered standard chemotherapy, and who as such do not fit current UK prescribing guidelines for trastuzumab

    Multilevel effects in the Rabi oscillations of a Josephson phase qubit

    Full text link
    We present Rabi oscillation measurements of a Nb/AlOx/Nb dc superconducting quantum interference device (SQUID) phase qubit with a 100 um^2 area junction acquired over a range of microwave drive power and frequency detuning. Given the slightly anharmonic level structure of the device, several excited states play an important role in the qubit dynamics, particularly at high power. To investigate the effects of these levels, multiphoton Rabi oscillations were monitored by measuring the tunneling escape rate of the device to the voltage state, which is particularly sensitive to excited state population. We compare the observed oscillation frequencies with a simplified model constructed from the full phase qubit Hamiltonian and also compare time-dependent escape rate measurements with a more complete density-matrix simulation. Good quantitative agreement is found between the data and simulations, allowing us to identify a shift in resonance (analogous to the ac Stark effect), a suppression of the Rabi frequency, and leakage to the higher excited states.Comment: 14 pages, 9 figures; minor corrections, updated reference

    Atomic layer deposition of Pt@CsH_2PO_4 for the cathodes of solid acid fuel cells

    Get PDF
    Atomic layer deposition (ALD) has been used to apply continuous Pt films on powders of the solid acid CsH_2PO_4 (CDP), in turn, used in the preparation of cathodes in solid acid fuel cells (SAFCs). The film deposition was carried out at 150 °C using trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe_3) as the Pt source and ozone as the reactant for ligand removal. Chemical analysis showed a Pt growth rate of 0.09 ± 0.01 wt%/cycle subsequent to an initial nucleation delay of 84 ± 20 cycles. Electron microscopy revealed the contiguous nature of the films prepared using 200 or more cycles. The cathode overpotential (0.48 ± 0.02 V at a current density of 200 mA/cm^2) was independent of Pt deposition amount beyond the minimum required to achieve these continuous films. The cell electrochemical characteristics were moreover extremely stable with time, with the cathode overpotentials increasing by no more than 10 mV over a 100 h period of measurement. Thus, ALD holds promise as an effective tool in the preparation of SAFC cathodes with high activity and excellent stability
    • …
    corecore