24,001 research outputs found
When Do Opponents of Gay Rights Mobilize? Explaining Political Participation in Times of Backlash against Liberalism
Existing research suggests that supporters of gay rights have outmobilized their opponents, leading to policy changes in advanced industrialized democracies. At the same time, we observe the diffusion of state-sponsored homophobia in many parts of the world. The emergence of gay rights as a salient political issue in global politics leads us to ask, “Who is empowered to be politically active in various societies?” What current research misses is a comparison of levels of participation (voting and protesting) between states that make stronger and weaker appeals to homophobia. Voters face contrasting appeals from politicians in favor of and against gay rights globally. In an analysis of survey data from Europe and Latin America, we argue that the alignment between the norms of sexuality a state promotes and an individual’s personal attitudes on sexuality increases felt political efficacy. We find that individuals who are tolerant of homosexuality are more likely to participate in states with gay-friendly policies in comparison with intolerant individuals. The reverse also holds: individuals with low education levels that are intolerant of homosexuality are more likely to participate in states espousing political homophobia
Biodiversity informatics: the challenge of linking data and the role of shared identifiers
A major challenge facing biodiversity informatics is integrating data stored in widely distributed databases. Initial efforts have relied on taxonomic names as the shared identifier linking records in different databases. However, taxonomic names have limitations as identifiers, being neither stable nor globally unique, and the pace of molecular taxonomic and phylogenetic research means that a lot of information in public sequence databases is not linked to formal taxonomic names. This review explores the use of other identifiers, such as specimen codes and GenBank accession numbers, to link otherwise disconnected facts in different databases. The structure of these links can also be exploited using the PageRank algorithm to rank the results of searches on biodiversity databases. The key to rich integration is a commitment to deploy and reuse globally unique, shared identifiers (such as DOIs and LSIDs), and the implementation of services that link those identifiers
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Single-level resonance parameters fit nuclear cross-sections
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total
Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars
Baryon and quark superfluidity in the cooling of neutron stars are
investigated. Observations could constrain combinations of the neutron or
Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with
a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an
MeV render quark matter virtually invisible for cooling. If the quark gap is
smaller, quark superfluidity could be important, but its effects will be nearly
impossible to distinguish from those of other baryonic constituents.Comment: 4 pages, 3 ps figures, uses RevTex(aps,prl). Submitted to Phys. Rev.
Let
On arithmetic detection of grey pulses with application to Hawking radiation
Micron-sized black holes do not necessarily have a constant horizon
temperature distribution. The black hole remote-sensing problem means to find
out the `surface' temperature distribution of a small black hole from the
spectral measurement of its (Hawking) grey pulse. This problem has been
previously considered by Rosu, who used Chen's modified Moebius inverse
transform. Here, we hint on a Ramanujan generalization of Chen's modified
Moebius inverse transform that may be considered as a special wavelet
processing of the remote-sensed grey signal coming from a black hole or any
other distant grey sourceComment: 5 pages, published versio
Transient Observers and Variable Constants, or Repelling the Invasion of the Boltzmann's Brains
If the universe expands exponentially without end, ``ordinary observers''
like ourselves may be vastly outnumbered by ``Boltzmann's brains,'' transient
observers who briefly flicker into existence as a result of quantum or thermal
fluctuations. One might then wonder why we are so atypical. I show that tiny
changes in physics--for instance, extremely slow variations of fundamental
constants--can drastically change this result, and argue that one should be
wary of conclusions that rely on exact knowledge of the laws of physics in the
very distant future.Comment: 4 pages, LaTeX; v2: added references; v3: more discussion of setting,
alternative approaches, now 5 pages; v4: added discussion of the effect of
quantum fluctuations on varying constants, appendix added, now 7 pages; v5:
new reference, minor correctio
A window into the neutron star: Modelling the cooling of accretion heated neutron star crusts
In accreting neutron star X-ray transients, the neutron star crust can be
substantially heated out of thermal equilibrium with the core during an
accretion outburst. The observed subsequent cooling in quiescence (when
accretion has halted) offers a unique opportunity to study the structure and
thermal properties of the crust. Initially crust cooling modelling studies
focussed on transient X-ray binaries with prolonged accretion outbursts (> 1
year) such that the crust would be significantly heated for the cooling to be
detectable. Here we present the results of applying a theoretical model to the
observed cooling curve after a short accretion outburst of only ~10 weeks. In
our study we use the 2010 outburst of the transiently accreting 11 Hz X-ray
pulsar in the globular cluster Terzan 5. Observationally it was found that the
crust in this source was still hot more than 4 years after the end of its short
accretion outburst. From our modelling we found that such a long-lived hot
crust implies some unusual crustal properties such as a very low thermal
conductivity (> 10 times lower than determined for the other crust cooling
sources). In addition, we present our preliminary results of the modelling of
the ongoing cooling of the neutron star in MXB 1659-298. This transient X-ray
source went back into quiescence in March 2017 after an accretion phase of ~1.8
years. We compare our predictions for the cooling curve after this outburst
with the cooling curve of the same source obtained after its previous outburst
which ended in 2001.Comment: 4 pages, 1 figure, to appear in the proceedings of "IAUS 337: Pulsar
Astrophysics - The Next 50 Years" eds: P. Weltevrede, B.B.P. Perera, L. Levin
Preston & S. Sanida
Proof of the Generalized Second Law for Quasistationary Semiclassical Black Holes
A simple direct explicit proof of the generalized second law of black hole
thermodynamics is given for a quasistationary semiclassical black hole.Comment: 12 pages, LaTeX, report Alberta-Thy-10-93 (revision of paper in
response to Phys. Rev. Lett. referees' comments, which suffered a series of
long delays
- …
