12,909 research outputs found
Do Evaporating Black Holes Form Photospheres?
Several authors, most notably Heckler, have claimed that the observable
Hawking emission from a microscopic black hole is significantly modified by the
formation of a photosphere around the black hole due to QED or QCD interactions
between the emitted particles. In this paper we analyze these claims and
identify a number of physical and geometrical effects which invalidate these
scenarios. We point out two key problems. First, the interacting particles must
be causally connected to interact, and this condition is satisfied by only a
small fraction of the emitted particles close to the black hole. Second, a
scattered particle requires a distance ~ E/m_e^2 for completing each
bremsstrahlung interaction, with the consequence that it is improbable for
there to be more than one complete bremsstrahlung interaction per particle near
the black hole. These two effects have not been included in previous analyses.
We conclude that the emitted particles do not interact sufficiently to form a
QED photosphere. Similar arguments apply in the QCD case and prevent a QCD
photosphere (chromosphere) from developing when the black hole temperature is
much greater than Lambda_QCD, the threshold for QCD particle emission.
Additional QCD phenomenological arguments rule out the development of a
chromosphere around black hole temperatures of order Lambda_QCD. In all cases,
the observational signatures of a cosmic or Galactic halo background of
primordial black holes or an individual black hole remain essentially those of
the standard Hawking model, with little change to the detection probability. We
also consider the possibility, as proposed by Belyanin et al. and D. Cline et
al., that plasma interactions between the emitted particles form a photosphere,
and we conclude that this scenario too is not supported.Comment: version published in Phys Rev D 78, 064043; 25 pages, 3 figures;
includes discussion on extending our analysis to TeV-scale,
higher-dimensional black hole
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results
(Abridged) New full sky temperature and polarization maps based on seven
years of data from WMAP are presented. The new results are consistent with
previous results, but have improved due to reduced noise from the additional
integration time, improved knowledge of the instrument performance, and
improved data analysis procedures. The improvements are described in detail.
The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM
model. The parameters for this model, using the WMAP data in conjunction with
baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors
on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260
+-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016,
n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL
uncertainties). The temperature power spectrum signal-to-noise ratio per
multipole is greater that unity for multipoles < 919, allowing a robust
measurement of the third acoustic peak. This measurement results in improved
constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the
epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data
alone. The new WMAP data, when combined with smaller angular scale microwave
background anisotropy data, results in a 3 sigma detection of the abundance of
primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial
power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the
Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements
provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement
Serie
Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars
Baryon and quark superfluidity in the cooling of neutron stars are
investigated. Observations could constrain combinations of the neutron or
Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with
a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an
MeV render quark matter virtually invisible for cooling. If the quark gap is
smaller, quark superfluidity could be important, but its effects will be nearly
impossible to distinguish from those of other baryonic constituents.Comment: 4 pages, 3 ps figures, uses RevTex(aps,prl). Submitted to Phys. Rev.
Let
Information in Black Hole Radiation
If black hole formation and evaporation can be described by an matrix,
information would be expected to come out in black hole radiation. An estimate
shows that it may come out initially so slowly, or else be so spread out, that
it would never show up in an analysis perturbative in , or in 1/N
for two-dimensional dilatonic black holes with a large number of minimally
coupled scalar fields.Comment: 12 pages, 1 PostScript figure, LaTeX, Alberta-Thy-24-93 (In response
to Phys. Rev. Lett. referees' comments, the connection between expansions in
inverse mass and in 1/N are spelled out, and a figure is added. An argument
against perturbatively predicting even late-time information is also
provided, as well as various minor changes.
Parity Violation in gamma proton Compton Scattering
A measurement of parity-violating spin-dependent gamma proton Compton
scattering will provide a theoretically clean determination of the
parity-violating pion-nucleon coupling constant . We
calculate the leading parity-violating amplitude arising from one-loop pion
graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated
for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde
Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions
To better understand the allowed range of black hole geometries, we study
Weyl-distorted Schwarzschild solutions. They always contain trapped surfaces, a
singularity and an isolated horizon and so should be understood to be
(geometric) black holes. However we show that for large distortions the
isolated horizon is neither a future outer trapping horizon (FOTH) nor even a
marginally trapped surface: slices of the horizon cannot be infinitesimally
deformed into (outer) trapped surfaces. We consider the implications of this
result for popular quasilocal definitions of black holes.Comment: The results are unchanged but this version supersedes that published
in CQG. The major change is a rewriting of Section 3.1 to improve clarity and
correct an error in the general expression for V(r,\theta). Several minor
errors are also fixed - most significantly an incorrect statement made in the
introduction about the extent of the outer prison in Vaidya. 17 pages, 2
figure
High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes
The relativistic viscous fluid equations describing the outflow of high
temperature matter created via Hawking radiation from microscopic black holes
are solved numerically for a realistic equation of state. We focus on black
holes with initial temperatures greater than 100 GeV and lifetimes less than 6
days. The spectra of direct photons and photons from decay are
calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray
spectrum from black holes distributed in our galactic halo. However, the most
promising route for their observation is to search for point sources emitting
gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR
Average Entropy of a Subsystem from its Average Tsallis Entropy
In the nonextensive Tsallis scenario, Page's conjecture for the average
entropy of a subsystem[Phys. Rev. Lett. {\bf 71}, 1291(1993)] as well as its
demonstration are generalized, i.e., when a pure quantum system, whose Hilbert
space dimension is , is considered, the average Tsallis entropy of an
-dimensional subsystem is obtained. This demonstration is expected to be
useful to study systems where the usual entropy does not give satisfactory
results.Comment: Revtex, 6 pages, 2 figures. To appear in Phys. Rev.
- …