1,620 research outputs found
Factors Influencing Immunization Status in Primary Care Clinics
Background and Objectives: National standards and goals for childhood immunization rates are well established. Yet, despite clear standards and goals, physicians do not achieve the desired rate (90%) for immunization coverage. This study examined factors related to immunization status for 2-year-old children in pediatric and family practice settings.
Methods: Specially trained personnel used computer software to audit 2,552 records from 42 practices in Northeast Florida throughout 1997–1999. Immunization records were judged as either complete or incomplete, and factors related to immunization status were studied. Clinic type and 18 immunization practice standards were reviewed for effect on immunization status.
Results: The probability of complete immunization status for children in pediatric clinics was greater than for those in family practice clinics. Multivariate logistic regression revealed that use of semiannual audits (odds ratio [OR]=2.00, confidence interval [CI]=1.65–2.42) was the most important factor for immunization completion. This was followed by availability of discounted immunizations (OR=.44, CI=.27–.73) and the use of an immunization tracking system (OR=1.48, CI=1.18–1.70). Factors that were not found to contribute included clinic type and the remaining 15 practice standards.
Conclusions: Considering the significant factors, immunization status was not affected by the type of clinic providing immunizations. Based on this analysis, family physicians should implement tracking systems and should perform semiannual audits to match the success of pediatricians in immunizing children. Neither group met nationally established goals for administration of immunizations for 2-year-old children
Design, Construction, and Monitoring of the Ground-Water Resources of a Large Mine-Spoil Area: Star Fire Tract, Eastern Kentucky
By the year 2010, the Star Fire mining operation in Knott, Breathitt, and Perry Counties in eastern Kentucky, which uses mountaintop-removal and hollow-fill mining techniques, will have created approximately 5,000 acres of gently rolling terrain that could support alternative land uses. The present research is centered on approximately 1,000 acres of spoil created since mining began in 1981. An aquifer fed by both ground and surface water will be created within the spoil. Spoil-handling techniques such as cast blasting, dragline placement, end dumping by trucks, and surface grading have created porous coarse-rock zones within the spoil through which ground water can move. A vertical rubble chimney in the spoil has been constructed of durable rock to enhance infiltration to the ground-water reservoir through a surface infiltration basin.
Fourteen monitoring wells have been installed along with flumes to gage surface-water discharge and monitor water quantity and quality at the site. Dye-tracing studies have identified ground-water flow paths and flow velocities. A preliminary assessment of the water resources at the site indicates that a stable water table has been created at the mined site. Based on an average saturated thickness of 21 feet for the entire site and an estimated porosity of 20 percent, the spoil stores approximately 4,200 acre-feet (1.37 billion gallons) of water.
Dye-tracing data, hydraulic gradients, and water-quality data indicate that ground water moves more slowly in the spoil\u27s interior; from there it flows down into the hollow fills before discharging as springs along the bottom of the spoil. The springs discharge approximately 1 million gallons per day under normal flow conditions, and discharges of approximately 5 million gallons per day have been measured a week after rainfall events
Complete Integrability of Geodesic Motion in General Kerr-NUT-AdS Spacetimes
We explicitly exhibit n-1 constants of motion for geodesics in the general
D-dimensional Kerr-NUT-AdS rotating black hole spacetime, arising from
contractions of even powers of the 2-form obtained by contracting the geodesic
velocity with the dual of the contraction of the velocity with the
(D-2)-dimensional Killing-Yano tensor. These constants of motion are
functionally independent of each other and of the D-n+1 constants of motion
that arise from the metric and the D-n = [(D+1)/2] Killing vectors, making a
total of D independent constants of motion in all dimensions D. The Poisson
brackets of all pairs of these D constants are zero, so geodesic motion in
these spacetimes is completely integrable.Comment: 4 pages. We have now found that the geodesic motion is not just
integrable, but completely integrabl
Genomics of a Metamorphic Timing QTL: Met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription
Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation
Constants of Geodesic Motion in Higher-Dimensional Black-Hole Spacetimes
In [arXiv:hep-th/0611083] we announced the complete integrability of geodesic
motion in the general higher-dimensional rotating black-hole spacetimes. In the
present paper we prove all the necessary steps leading to this conclusion. In
particular, we demonstrate the independence of the constants of motion and the
fact that they Poisson commute. The relation to a different set of constants of
motion constructed in [arXiv:hep-th/0612029] is also briefly discussed.Comment: 8 pages, no figure
Separability of Hamilton-Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS Spacetimes
We demonstrate the separability of the Hamilton-Jacobi and scalar field
equations in general higher dimensional Kerr-NUT-AdS spacetimes. No restriction
on the parameters characterizing these metrics is imposed.Comment: 4 pages, no figure
Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops
The cosmological features of primordial black holes formed from collapsed
cosmic string loops are studied. Observational restrictions on a population of
primordial black holes are used to restrict , the fraction of cosmic string
loops which collapse to form black holes, and , the cosmic string
mass-per-unit-length. Using a realistic model of cosmic strings, we find the
strongest restriction on the parameters and is due to the energy
density in photons radiated by the black holes. We also find that
inert black hole remnants cannot serve as the dark matter. If earlier, crude
estimates of are reliable, our results severely restrict , and
therefore limit the viability of the cosmic string large-scale structure
scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages,
FERMILAB-Pub-93/137-
Hydrogeology, Hydrogeochemistry, and Spoil Settlement at a Large Mine-Spoil Area in Eastern Kentucky: Star Fire Tract
An applied research program at the Star Fire surface mine in eastern Kentucky, owned and operated by Cypress-AMAX Coal Co., defined spoil characteristics to develop and monitor water resources, which will help identify a reliable water supply for future property development. Water stored in the mine spoil may provide a usable ground-water supply, and the spoil could also be engineered to provide base flow to surfacewater reservoirs.
Ground-water recharge enters the spoil by way of sinking streams, ground-water flow from bedrock in contact with the mine spoil, and a specially designed infiltration basin. Ground water discharges predominantly from springs and seeps along the northwestern outslope of the spoil.
A conceptual model of ground-water flow, based on data from monitoring wells, discharge from springs and ponds, dye tracing, hydraulic gradients, and field reconnaissance, indicates that ground water moves slowly in the spoil interior, where it must flow down into the valley fills before discharging out of the spoil. Two saturated zones have been established: the first in the spoil interior, and the second in the valley fills that surround the main spoil body at lower elevations. The saturated zone in the valley fills contains fresher water than the zone in the spoil interior and exhibits more water-level fluctuation because of efficient recharge pathways along the spoil’s periphery at the spoil-highwall contact. The average saturated thickness of the valley fill areas (30.1 ft) is approximately twice the average saturated thickness found in the spoil’s interior (15.4 ft). Spatial water-quality variations are consistent with those predicted in the proposed flow system.
Based on an estimated average saturated thickness of 21 ft for the entire site, the saturated spoil stores 4,200 acre-ft (1.4 billion gallons) of water. Hydraulic-conductivity (K) values derived from slug tests range from 2.0 × 10-6 to more than 2.9 × 10-5 ft/sec, and are consistent with hydraulic-conductivity data for other spoil areas where similar mining methods are used.
Water samples taken from wells and springs indicate that the ground water is a calcium-magnesium-sulfate type, differing mainly in the total concentration of these constituents at various locations. Mineral saturation indices calculated using the geochemical model PHREEQE indicate that most of the ground water is near equilibrium with gypsum. Nearly all the water samples had pH measurements in a favorable range between 6.0 and 7.0, indicating that the spoil does not produce highly acidic water.
Measurements of vertical displacement around the monitoring-well surface casings indicate that differential settlement is occurring within the mine spoil. The most rapid settlement occurs in the most recently placed spoil near the active mining pit
- …