2 research outputs found

    Decay spectroscopy at the two-proton drip line: radioactivity of the new nuclides 160Os and 156W

    Get PDF
    The radioactivity of 76160Os84 and 74156W82 that lie at the two-proton drip line have been measured in an experiment performed at the Accelerator Laboratory of the University of Jyväskylä. The 160Os nuclei were produced using fusion-evaporation reactions induced by a beam of 310 MeV 58Ni ions bombarding a 106Cd target. The 160Os ions were separated in flight using the recoil separator MARA and implanted into a double-sided silicon strip detector, which was used to measure their decays. The α decays of the ground state of 160Os (Eα = 7092(15) keV, t1/2 = 97−32+97 μs) and its isomeric state (Eα = 8890(10) keV, t1/2 = 41−9+15 μs) were measured, allowing the excitation energy of the isomer to be determined as 1844(18) keV. These α-decay properties and the excitation energy of the isomer are compared with systematics. The α decays were correlated with subsequent decays to investigate the β decays of the ground state of 156W, revealing that unlike its isotones, both low-lying isomers were populated in its daughter nuclide, 156Ta. An improved value for the half-life of the proton-decaying high-spin isomeric state in 73156Ta83 of 333−22+25 ms was obtained in a separate experiment using the same experimental systems with a 102Pd target. This result was employed to improve the precision of the half-life determined for 156W, which was measured as 157−34+57 ms

    Magnetic moments of thallium isotopes in the vicinity of magic N = 126

    Get PDF
    The magnetic dipole moments (μ) of 209Tlg (N=128) and 207Tlm (N=126) have been measured for the first time using the in-source laser resonance-ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the usually overwhelming background of the isobaric francium isotopes and allows access to heavy thallium isotopes with A⩾207. The self-consistent theory of finite Fermi systems based on the energy density functional by Fayans et al. well describes the N dependence of μ for 1/2+ thallium ground states, as well as μ for the 11/2− isomeric states in europium, gold and thallium isotopes. The inclusion of particle-vibration coupling leads to a better agreement between the theory and experiment for μ(Tlg, Iπ=1/2+). It is shown that beyond mean-field contributions to μ cannot be neglected at least for thallium isotopes with Iπ=1/2+
    corecore