20,512 research outputs found

    More than Dollars for Scholars: The Impact of the Dell Scholars Program on College Access, Persistence and Degree Attainment

    Get PDF
    Although college enrollment rates have increased substantially over the last several decades, socioeconomic inequalities in college completion have actually widened over time. A critical question, therefore, is how to support low-income and first-generation students to succeed in college after they matriculate. We investigate the impact of the Dell Scholars Program which provides a combination of generous financial support and individualized advising to scholarship recipients before and throughout their postsecondary enrollment. The program's design is motivated by a theory of action that, in order to meaningfully increase the share of lower-income students who earn a college degree, it is necessary both to address financial constraints students face and to provide ongoing support for the academic, cultural and other challenges that students experience during their college careers. We isolate the unique impact of the program on college completion by capitalizing on an arbitrary cutoff in the program's algorithmic selection process. Using a regression discontinuity design, we find that although being named a Dell Scholar has no impact on initial college enrollment or early college persistence, scholars at the margin of eligibility are significantly more likely to earn a bachelor's degree on-time or six years after high school graduation. These impacts are sizeable and represent a nearly 25 percent or greater increase in both four- and six-year bachelor's attainment. The program is resource intensive. Yet, back-of-theenvelope calculations indicate that the Dell Scholars Program has a positive rate of return

    The Physical Science Laboratory of the State Normal

    Get PDF
    The Physical Science Laboratory, now nearing completion, stands midway between the Auditorium and the Gymnasium at the north end of the quadrangle. It is of fireproof construction, and is 112 feet, 6 inches long, 64 feet, 6 inches wide, and, from the ground floor, is four stories high

    Relativistic Effects on the Appearance of a Clothed Black Hole

    Get PDF
    For an accretion disk around a black hole, the strong relativistic effects affect every aspect of the radiation from the disk, including its spectrum, light-curve, and image. This work investigates in detail how the images of a thin disk around a black hole will be distorted, and what the observer will see from different viewing angles and in different energy bands.Comment: 4 pages, 5 figures. Based on the poster presented at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). Color versions of figures are given separatel

    Evaluation of zirconia, thoria and zirconium diboride for advanced resistojet use

    Get PDF
    A literature survey was conducted to collect material properties data on all advanced high temperature materials. Three of these, Y2O3-stabilized ZrO2, ThO2, and ZrB2 with additives of C and SiC were selected for further study. Stabilized ZrO2 and ThO2 were found to have higher temperature oxidation resistance than any metal and great potential for use in advanced biowaste resistojets. ZrO2 has a lower electrical resistivity and sublimation and a higher creep endurance strength. ZrO2 and ThO2 tubular heat exchangers, electrically heated indirectly, were evaluated in short tests to about 1900 K in flowing CO2. ZrO2 was subjected to N2, H2, H2O and vacuum as well. X-ray diffraction and fluorescence analyses were made. The metal-to-ceramic seal technology for ZrO2 and ThO2 was developed using chemical vapor deposition of tantalum for metallizing and 82 Au - 18 Ni filler braze

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    XMM-Newton observations of the Seyfert 1 AGN H0557-385

    Full text link
    We present XMM-Newton observations of the Seyfert 1 AGN H0557-385. We have conducted a study into the warm absorber present in this source, and using high-resolution RGS data we find that the absorption can be characterised by two phases: a phase with log ionisation parameter xi of 0.50 (where xi is in units of ergs cm/s) and a column of 0.2e21 cm^-2, and a phase with log xi of 1.62 and a column of 1.3e22 cm^-2. An iron K alpha line is detected. Neutral absorption is also present in the source, and we discuss possible origins for this. On the assumption that the ionised absorbers originate as an outflow from the inner edge of the torus, we use a new method for finding the volume filling factor. Both phases of H0557-385 have small volume filling factors (< 1%). We also derive the volume filling factors for a sample of 23 AGN using this assumption and for the absorbers with log xi > 0.7 we find reasonable agreement with the filling factors obtained through the alternative method of equating the momentum flow of the absorbers to the momentum loss of the radiation field. By comparing the filling factors obtained by the two methods, we infer that some absorbers with log xi < 0.7 occur at significantly larger distances from the nucleus than the inner edge of the torus.Comment: Accepted for publication in MNRA

    A search for thermal X-ray signatures in Gamma-Ray Bursts I: Swift bursts with optical supernovae

    Full text link
    The X-ray spectra of Gamma-Ray Bursts can generally be described by an absorbed power law. The landmark discovery of thermal X-ray emission in addition to the power law in the unusual GRB 060218, followed by a similar discovery in GRB 100316D, showed that during the first thousand seconds after trigger the soft X-ray spectra can be complex. Both the origin and prevalence of such spectral components still evade understanding, particularly after the discovery of thermal X-ray emission in the classical GRB 090618. Possibly most importantly, these three objects are all associated with optical supernovae, begging the question of whether the thermal X-ray components could be a result of the GRB-SN connection, possibly in the shock breakout. We therefore performed a search for blackbody components in the early Swift X-ray spectra of 11 GRBs that have or may have associated optical supernovae, accurately recovering the thermal components reported in the literature for GRBs 060218, 090618 and 100316D. We present the discovery of a cooling blackbody in GRB 101219B/SN2010ma, and in four further GRB-SNe we find an improvement in the fit with a blackbody which we deem possible blackbody candidates due to case-specific caveats. All the possible new blackbody components we report lie at the high end of the luminosity and radius distribution. GRB 101219B appears to bridge the gap between the low-luminosity and the classical GRB-SNe with thermal emission, and following the blackbody evolution we derive an expansion velocity for this source of order 0.4c. We discuss potential origins for the thermal X-ray emission in our sample, including a cocoon model which we find can accommodate the more extreme physical parameters implied by many of our model fits.Comment: 16 pages, 6 figures, accepted for MNRA

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    The XMM-Newton spectral-fit database

    Full text link
    The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipeline-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.Comment: Conference proceedings of IAU Symposium 304: Multiwavelength AGN surveys and studie

    Evaporation of a Kerr black hole by emission of scalar and higher spin particles

    Get PDF
    We study the evolution of an evaporating rotating black hole, described by the Kerr metric, which is emitting either solely massless scalar particles or a mixture of massless scalar and nonzero spin particles. Allowing the hole to radiate scalar particles increases the mass loss rate and decreases the angular momentum loss rate relative to a black hole which is radiating nonzero spin particles. The presence of scalar radiation can cause the evaporating hole to asymptotically approach a state which is described by a nonzero value of a∗≡a/Ma_* \equiv a / M. This is contrary to the conventional view of black hole evaporation, wherein all black holes spin down more rapidly than they lose mass. A hole emitting solely scalar radiation will approach a final asymptotic state described by a∗≃0.555a_* \simeq 0.555. A black hole that is emitting scalar particles and a canonical set of nonzero spin particles (3 species of neutrinos, a single photon species, and a single graviton species) will asymptotically approach a nonzero value of a∗a_* only if there are at least 32 massless scalar fields. We also calculate the lifetime of a primordial black hole that formed with a value of the rotation parameter a∗a_{*}, the minimum initial mass of a primordial black hole that is seen today with a rotation parameter a∗a_{*}, and the entropy of a black hole that is emitting scalar or higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for variables, added journal referenc
    • 

    corecore