283 research outputs found

    Quantization-based Bermudan option pricing in the FX world

    Get PDF
    This paper proposes two numerical solution based on Product Optimal Quan-tization for the pricing of Foreign Echange (FX) linked long term Bermudan options e.g. Bermudan Power Reverse Dual Currency options, where we take into account stochastic domestic and foreign interest rates on top of stochastic FX rate, hence we consider a 3-factor model. For these two numerical methods, we give an estimation of the L2L^2-error induced by such approximations and we illustrate them with market-based examples that highlight the speed of such methods

    Compared genomics of the strand switch region of Leishmania chromosome 1 reveal a novel genus-specific gene and conserved structural features and sequence motifs

    Get PDF
    BACKGROUND: Trypanosomatids exhibit a unique gene organization into large directional gene clusters (DGCs) in opposite directions. The transcription "strand switch region" (SSR) separating the two large DGCs that constitute chromosome 1 of Leishmania major has been the subject of several studies and speculations. Thus, it has been suspected of being the single replication origin of the chromosome, the transcription initiation site for both DGCs or even a centromere. Here, we have used an inter-species compared genomics approach on this locus in order to try to identify conserved features or motifs indicative of a putative function. RESULTS: We isolated, and compared the structure and nucleotide sequence of, this SSR in 15 widely divergent species of Leishmania and Sauroleishmania. As regards its intrachromosomal position, size and AT content, the general structure of this SSR appears extremely stable among species, which is another demonstration of the remarkable structural stability of these genomes at the evolutionary level. Sequence alignments showed several interesting features. Overall, only 30% of nucleotide positions were conserved in the SSR among the 15 species, versus 74% and 62% in the 5' parts of the adjacent XPP and PAXP genes, respectively. However, nucleotide divergences were not distributed homogeneously along this sequence. Thus, a central fragment of approximately 440 bp exhibited 54% of identity among the 15 species. This fragment actually represents a new Leishmania-specific CDS of unknown function which had been overlooked since the annotation of this chromosome. The encoded protein comprises two trans-membrane domains and is classified in the "structural protein" GO category. We cloned this novel gene and expressed it as a recombinant green fluorescent protein-fused version, which showed its localisation to the endoplasmic reticulum. The whole of these data shorten the actual SSR to an 887-bp segment as compared with the original 1.6 kb. In the rest of the SSR, the percentage of identity was much lower, around 22%. Interestingly, the 72-bp fragment where the putatively single transcription initiation site of chromosome 1 was identified is located in a low-conservation portion of the SSR and is itself highly polymorphic amongst species. Nevertheless, it is highly C-rich and presents a unique poly(C) tract in the same position in all species. CONCLUSION: This inter-specific comparative study, the first of its kind, (a) allowed to reveal a novel genus-specific gene and (b) identified a conserved poly(C) tract in the otherwise highly polymorphic region containing the putative transcription initiation site. This allows hypothesising an intervention of poly(C)-binding proteins known elsewhere to be involved in transcriptional control

    In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

    No full text
    International audienceInfections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen

    Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting

    Get PDF
    Interaction with the multi-PDZ protein GRIP is required for the synaptic targeting of AMPA receptors, but the underlying mechanism is unknown. We show that GRIP binds to the liprin-α/SYD2 family of proteins that interact with LAR receptor protein tyrosine phosphatases (LAR-RPTPs) and that are implicated in presynaptic development. In neurons, liprin-α and LAR-RPTP are enriched at synapses and coimmunoprecipitate with GRIP and AMPA receptors. Dominant-negative constructs that interfere with the GRIP-liprin interaction disrupt the surface expression and dendritic clustering of AMPA receptors in cultured neurons. Thus, by mediating the targeting of liprin/GRIP-associated proteins, liprin-α is important for postsynaptic as well as presynaptic maturation

    Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria

    Get PDF
    In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro
    • …
    corecore