12 research outputs found

    Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils

    Get PDF
    Magnesium phosphates such as struvite (MgNH4PO4 · 6H2O) can be recovered from municipal, industrial, and agricultural wastewaters. However, limited information is available on the beneficial reuse of these recovered products; research has focused on low pH soils. Th is study determined whether recovered struvite and dittmarite (MgNH4PO4 · H2O) were effective P fertilizers in neutral to slightly alkaline soils. In addition to commercially available triple superphosphate (TSP) and certified organic rock phosphate (RP), recovered struvite, dittmarite, and a heterogeneous recovered phosphate were evaluated in a laboratory dissolution study and as fertilizers for spring wheat (Triticum aestivum L.) in a greenhouse study. Struvite and dittmarite were much more soluble than RP, but less soluble than TSP. Laboratory dissolution kinetics were fast, with most materials nearing equilibrium within 7 to 14 d. At a soil pH of 6.5, both dittmarite and struvite increased the average plant P concentration over the control. Struvite and dittmarite performance was similar to TSP. There were no significant differences in plant dry matter (DM) production or total P uptake at pH 6.5. In the limed soil (pH 7.6), many treatments had plant P concentrations significantly lower than the control, but most fertilizers increased DM production over the control; all fertilizers generally performed similarly to one another. These findings support previous work showing recovered Mg phosphates to be effective in acidic soils, and provide evidence that they are also effective in slightly alkaline soils. Recovered Mg phosphates could become a useful alternative for P fertilization in arid and semiarid environments

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Crop Rotation and Soil Amendment Alters Sorghum Grain Quality

    Get PDF
    Soybean [Glycine max (L.) Merr.] rotation enhances grain sorghum [Sorghum bicolor (L.) Moench] yield, but infl uence on grain quality has not been measured. The objective was to determine the effect of cropping sequence (CS) and soil amendment (SA) on grain yield and quality. Sorghum grain yield and quality, soil NO3–N and water were measured in a rotation study in 2003 and 2004 on a Sharpsburg silty clay loam (fine, smectitic, mesic Typic Argiudoll). Cropping sequences were continuous sorghum, and sorghum rotated with non-nodulating and nodulating soybean. Soil amendments consisted of no amendment, manure (17–26 Mg dry matter ha−1 yr−1), and N (84 kg ha−1 yr−1). CS × SA interaction effects were found for most parameters. Rotation with non-nodulating soybean without SA increased yield by 2.6 to 2.8 Mg ha−1 over continuous sorghum without SA. Rotation without SA with nodulating soybean further increased yield by 1.7 to 1.8 Mg ha−1 over rotation with non-nodulating soybean. Grain N increased by 0.5 to 1.0, 2.5 to 5.0, and 3.3 to 4.9 g kg−1 for N application to continuous sorghum and sorghum rotated with non-nodulating and nodulating soybean, respectively. Tangential abrasive dehulling device (TADD) removal indicated that continuous sorghum without SA produced the softest grain with 43 to 44% TADD removal, and sorghum rotated with nodulating soybean with manure produced the hardest grain with 22 to 27% TADD removal. As food end-use opportunities for sorghum grain evolve, use of crop rotation and SA application will be important to produce grain with desirable quality attributes. Includes corrected Table 4
    corecore