407 research outputs found

    Enhancing Synchrony in Chaotic Oscillators by Dynamic Relaying

    Full text link
    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of R\"ossler system in absence of coupling delay and in Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in electronic circuit of R\"ossler oscillators.Comment: 4 pages, 9 figure

    Improving privacy and security of data using Secured Distributable Cloud Storage (SDCS)

    Get PDF
    Cloud Computing is a recent BUZZWORD in the IT world. Behind this fancy poetic phrase there lies a true picture of the future of computing for both in technical perspective and social perspective. There are three issues that we are going to consider in cloud computing. First is Security Issue, security loss says about how the data is being used by the server providers. They try to business your data that you have stored in their servers. To overcome this Issue, we use the concept of Distributed Storage System. Second one is Data Loss, the problem of the ever increasing threat of Malware and Ransomware to cloud storage has led to the option of storing a copy the user data on Proxy Server. Third is, issues on Hacking, it is illegal access of data. Hackers are the crackers who hack the data during transmission of data either for social good purpose or for personal purpose. Cryptographic Data splitting with dynamic approach is used for securing information

    Examination of the Mechanical, Corrosion, and Tribological Behavior of Friction Stir Welded Aluminum Alloy AA8011

    Get PDF
    Aluminum alloy AA8011 is emerging as a promising material for modern engineering applications in which improved tensile strength, hardness, corrosion-resistance, and wear-resistance of materials are required. Typically, AA8011 alloys are utilized in air-conditioning ducts and heat exchanger fins in ships, leisure boats, luxury vessels, workboats, fishing vessels, and patrol boats. However, the conventional welding of AA8011 is a challenging procedure. In this context, this paper focuses on the development of an effective solid-state welding methodology for AA8011 alloy welding. The AA8011 alloy was friction stir welded by varying the tool rotation speed, traverse speed, and shoulder diameter. The microhardness, tensile strength, joint efficiency, elongation, corrosion rate, and wear rate of the friction stir welded specimens were compared with the base material. Fractography analysis was conducted after the tensile test and surface morphology analysis after corrosion and wear tests, using scanning electron microscopy. The compositional elements in the corroded and worn section of the specimens were analyzed using energy-dispersive X-ray spectroscopy. Based on the joint efficiency as a primary constraint, the optimum process parameters for friction stir welding of aluminum alloy AA8011 have been established as follows: tool rotation speed of 1200 rpm, tool traverse speed of 45 mm/min, and tool shoulder diameter of 21 mm

    Frequency splitting elimination and cross-coupling rejection of wireless power transfer to multiple dynamic receivers

    Get PDF
    Simultaneous power transfer to multiple receiver (Rx) system is one of the key advantages of wireless power transfer (WPT) system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE) of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx) and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions

    Synthesis of g-carbon nitride-Ag3PO4 nanohybrid using Okra plant extract and their photocatalytic activity for the degradation of fluorescein and crystal violet dyes

    Get PDF
    Development of eco-friendly efficient photo catalyst is an urgent need for waste water treatment in industry. A facile eco-friendly method is established to synthesize hybrid nanocomposite of g-C3N4/Ag3PO4 using Abelmoschus esculentus plant extract and used as highly efficient photo catalyst for degradation of textile toxins and pharmaceutical waste from industrial waste water. The synthesized catalysts have been characterized by FTIR, XRD, SEM, TEM and EDAX analysis. XRD peaks confirm the cubic phase of Ag3PO4, high crystallinity and purity of nanocomposite. SEM studies show nanocomposites with rough surface and irregular morphology. TEM reports confirm the spherical morphology of silver phosphate and it is evenly wrapped on the surface of graphene sheets. EDAX confirms the purity and presence of all elements in composite. Photo catalytic activity of catalyst has been investigated towards degradation of CV and Fluorescein dyes. The superior photo catalytic performance of g-C3N4/Ag3PO4 nanohybrid composite on CV and Fluorescein dye has been observed and compared with recent report of literature. The photo catalytic studies revealed that the synthesized catalyst is efficient and degrade 95% of Fluorescein and CV within 2 hours. Reusability of the catalyst has been evaluated and it reveals stability and recyclability of the catalyst. The mechanism of photo catalytic activity has also been discussed in detail

    Synthesis of g-carbon nitride-Ag3PO4 nanohybrid using Okra plant extract and their photocatalytic activity for the degradation of fluorescein and crystal violet dyes

    Get PDF
    595-603Development of eco-friendly efficient photo catalyst is an urgent need for waste water treatment in industry. A facile eco-friendly method is established to synthesize hybrid nanocomposite of g-C3N4/Ag3PO4 using Abelmoschus esculentus plant extract and used as highly efficient photo catalyst for degradation of textile toxins and pharmaceutical waste from industrial waste water. The synthesized catalysts have been characterized by FTIR, XRD, SEM, TEM and EDAX analysis. XRD peaks confirm the cubic phase of Ag3PO4, high crystallinity and purity of nanocomposite. SEM studies show nanocomposites with rough surface and irregular morphology. TEM reports confirm the spherical morphology of silver phosphate and it is evenly wrapped on the surface of graphene sheets. EDAX confirms the purity and presence of all elements in composite. Photo catalytic activity of catalyst has been investigated towards degradation of CV and Fluorescein dyes. The superior photo catalytic performance of g-C3N4/Ag3PO4 nanohybrid composite on CV and Fluorescein dye has been observed and compared with recent report of literature. The photo catalytic studies revealed that the synthesized catalyst is efficient and degrade 95% of Fluorescein and CV within 2 hours. Reusability of the catalyst has been evaluated and it reveals stability and recyclability of the catalyst. The mechanism of photo catalytic activity has also been discussed in detail

    A New Triple-Switch-Triple-Mode High Step-Up Converter with Wide Range of Duty Cycle for DC Microgrid Applications

    Get PDF

    Corrosion and Tribological Characteristics of FSPed Aluminum Alloy AA5052

    Get PDF
    Friction stir processing (FSP) is a solid-state and effective process for surface modification of aluminium alloys. In this study the AA5052 alloy, widely used in marine applications, has been subjected to FSP. The FSP trials have been carried out by altering the FSP process parameters (tool rotation speed, tool traverse speed, and shoulder diameter). The friction stir processed specimens have been characterised / tested for microstructure, microhardness, sliding wear, immersion corrosion, and electrochemical corrosion. The hybrid polynomial – radial basis function-based models have been developed to determine the relationship between the process parameters and the evaluated properties. Furthermore, the optimum parameters for obtaining high hardness, wear resistance, and corrosion resistance have been determined. Microstructure evaluation in the friction stir processed specimens has shown refinement and uniform dispersion of β particles throughout the α-Al matrix. The results show that the improvement in properties is a result of the homogeneous dispersion of secondary β phase particles in the matrix. Friction stir processing of AA5052 alloy has improved hardness by ~14.5%, wear resistance by ~83%, and corrosion resistance ~87%. The optimum process window for friction stir processing of AA5052 alloy is tool rotation speed between 500 rpm and 900 rpm, tool traverse speed between 10 mm/min and 30 mm/min, and tool shoulder diameter of 18 mm and 21 mm

    Isolated/non-isolated quad-inverter configuration for multilevel symmetrical/asymmetrical dual six-phase star-winding converter

    Get PDF
    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional switch (MOSFET/IGBT) per phase and links with the neutral line through two capacitors which allows symmetrical and asymmetrical operations. A modified single carrier five-level modulation (MSCFM) algorithm is developed and modulates each 2-level VSI as a 5-level output multilevel inverter. The entire AC converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power systems, electrical vehicles, AC tractions, and ‘More-Electric Aircraft’ propulsion systems
    corecore