67 research outputs found

    Magnetic and humidity sensing properties of nanostructured Cu[x]Co[1-x]Fe2O4 synthesized by auto combustion technique

    Full text link
    Magnetic nanomaterials (23-43 nm) of Cux_xCo1x_{1-x}Fe2_2O4_4\ (x = 0.0, 0.5 and 1.0) were synthesized by auto combustion method. The crystallite sizes of these materials were calculated from X-ray diffraction peaks. The band observed in Fourier transform infrared spectrum near 575 cm1^{-1} in these samples confirm the presence of ferrite phase. Conductivity measurement shows the thermal hysteresis and demonstrates the knee points at 475o^oC, 525o^oC and 500o^oC for copper ferrite, cobalt ferrite and copper-cobalt mixed ferrite respectively. The hystersis M-H loops for these materials were traced using the Vibrating Sample Magnetometer (VSM) and indicate a significant increase in the saturation magnetization (Ms_s) and remanence (Mr_r) due to the substitution of Cu2+^{2+} ions in cobalt ferrite, while the intrinsic coercivity (Hc_c) was decreasing. Among these ferrites, copper ferrite exhibits highest sensitivity for humidity.Comment: 12 pages, 7 figure

    Preparation of Zinc-Sulfide Thin Films in the Presence of Sodium Tartrate as a complexing agent

    Get PDF
    The article offers information on the experiment done for the electrodeposition of zinc-sulfide (ZnS) thin films on the titanium substrate in the presence of sodium tartrate as a complexing agent. It states that the electrodeposition process has several advantages such as the possibility for large-scale production and minimum waste of components. It mentions that depositions were carried out by varying the deposition potential to determine the optimal conditions of deposition of ZnS thin film

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio

    Effect of exposure to electron beam irradiation in biopolymer papain and their electrical behaviour

    No full text
    33-38The obtention of biopolymer papain irradiated with 8 MeV energy of electron beam to different doses from 1 kGy to 10 kGy and the effect of the radiation on the electrical behaviour of the biopolymer have been investigated in the temperature range 29°-135<span style="font-family:Symbol;mso-ascii-font-family: " times="" new="" roman";mso-hansi-font-family:"times="" roman";mso-char-type:symbol;="" mso-symbol-font-family:symbol"="" lang="EN-GB">°C. The <i style="mso-bidi-font-style: normal">ac impedance plots indicate a single relaxation process in biopolymer papain in different temperatures. An increase in bulk electrical conductivity was noted for biopolymer papain with temperature after irradiation which is related to the hopping of charge carriers between the sites. The electrical conductivity of fresh and irradiated papain follows the universal power law and from which it is observed that the <i style="mso-bidi-font-style: normal">ac conductivity is frequency dependent and it obeys the electron tunneling model of conduction mechanism. The SEM images reveal the larger particle size with non-uniform structure upon irradiation of papain. </span
    corecore