8 research outputs found

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Trichoderma rhizosphere competence, suppression of diseases, and biotic associations

    No full text
    Trichoderma fungi are facultative plant symbionts that colonize multiple plant species. In natural environments, the process of root colonization by Trichoderma involves several stages. The first is the capacity of Trichoderma to colonize the rhizosphere by sensing molecules secreted by the roots, and the ability to compete or cooperate with the microbial community present in the rhizosphere. Once Trichoderma reaches the rhizoplane, the fungus must next overcome/manipulate the innate plant defenses by releasing secreted molecules which will allow its establishment inside the root. During this process of rhizosphere and root colonization, Trichoderma release specialized metabolites (commonly known as secondary metabolites) that manipulate the roots and also restrict bacteria, nematodes, and filamentous pathogens. The impact of Trichoderma in agriculture relies on the capacity to combat the negative effects of plant pathogens, and the ability to induce resistance in plant tissues far from the site of colonization (induced systemic resistance, ISR). ISR is activated by the sensing of Trichoderma elicitors and does not require root colonization. Here, we describe the different components as well as the impact of Trichoderma on the rhizosphere microbiome, the mechanisms of root colonization, and ISR activation

    TrichoGate: An improved vector system for a large scale of functional analysis of Trichoderma genes

    Get PDF
    Species of the genus Trichoderma are ubiquitous in the environment and are widely used in agriculture, as biopesticides, and in the industry for the production of plant cell wall-degrading enzymes. Trichoderma represents an important genus of endophytes, and several Trichoderma species have become excellent models for the study of fungal biology and plant–microbe interactions; moreover, are exceptional biotechnological factories for the production of bioactive molecules useful in agriculture and medicine. Next generation sequencing technology coupled with systematic construction of recombinant DNA molecules provides powerful tools that contribute to the functional analysis of Trichoderma genetics, thus allowing for a better understanding of the underlying factors determining its biology. Here, we present the creation of diverse vectors containing (i) promoter-specific vectors for Trichoderma, (ii) gene deletions (using hygromycin phosphotransferase as selection marker), (iii) protein localization (mCherry and eGFP, which were codon-optimized for Trichoderma), (iv) gene complementation (neomycin phosphotransferase) and (v) overexpression of encoding gene proteins fused to fluorescent markers, by using the Golden Gate cloning technology. Furthermore, we present the design and implementation of a binary vector for Agrobacterium-mediated transformation in Trichoderma to increase the homologous recombination rate and the generation of a novel selection marker based on carboxin resistance

    The NADPH oxidases Nox1 and Nox2 differentially regulate volatile organic compounds, fungitastic activity, plant growth promotion and nutrient assimilation in Trichoderma atroviride

    Get PDF
    In eukaryotic systems, membrane-bound NADPH oxidases (Nox) generate reactive oxygen species (ROS) as a part of normal physiological functions. In the soil-borne mycoparasitic and plant facultative symbiont Trichoderma atroviride, Nox1 and the regulator NoxR are involved in differentiation induced by mechanical damage, while the role of Nox2 has not been determined. The knock-out strains Δnox1, ΔnoxR and Δnox2 were compared to the parental strain (WT) in their ability to grow and conidiate under a series of stress conditions (osmotic, oxidative, membrane, and cell-wall stresses). All three genes were differentially involved in the stress-response phenotypes. In addition, several interactive experiments with biotic factors (plant seedlings and other fungi) were performed comparing the mutant phenotypes with the WT, which was used as the reference strain. Δnox1 and ΔnoxR significantly reduced the antagonistic activity of T. atroviride against Rhizoctonia solani and Sclerotinia sclerotiorum in direct confrontation assays, but Δnox2 showed similar activity to the WT. The Δnox1, ΔnoxR, and Δnox2 mutants showed quantitative differences in the emission of several volatile organic compounds (VOCs). The effects of a blend of these volatiles on plant-growth promotion of Arabidopsis thaliana seedlings were determined in closed-chamber experiments. The increase in root and shoot biomass induced by T. atroviride VOCs was significantly lowered by ΔnoxR and Δnox1, but not by Δnox2. In terms of fungistatic activity at a distance, Δnox2 had a significant reduction in this trait against R. solani and S. sclerotiorum, while fungistasis was highly increased by ΔnoxR and Δnox1. Identification and quantification of individual VOCs in the blends emitted by the strains was performed by GC-MS and the patterns of variation observed for individual volatiles, such as 6-Pentyl-2H-pyran-2-one (6PP-1) and (E)-6-Pent-1-enylpyran-2-one (6PP-2) were consistent with their negative effects in plant-growth promotion and positive effects in fungistasis at a distance. Nox1 and NoxR appear to have a ubiquitous regulatory role of in a variety of developmental and interactive processes in T. atroviride either as positive or negative modulators. Nox2 may also have a role in regulating production of VOCs with fungistatic activity

    Molecular mechanisms of communication mediated by fungal volatile organic compounds

    No full text
    Trichodermaspecies are soil-borne filamentous fungi widely utilized for their many plant health benefits.Trichoderma spp. establish associations with plants, nematodes and other fungi, including plant pathogens. In these interactions diverse molecules, such as microbial volatile organic compounds (mVOCs) have an important role during this inter- and intra- kingdom communication. Diverse species of Trichoderma produce different blends of mVOCs and are also differences between isolates from the same species, most likely in the capacity to respond to the environment. Here, we present the role of reactive oxygen species in T.atroviride and how mVOCs affect plant and plant pathogen interactions. By using gene deletion mutants in T. atroviride we demostrated that ?nox1, ?noxR and ?nox2 strains showed quantitative differences in the emission of several volatile organic compounds (VOCs). The effects of a blend of these volatiles on plant-growth promotion of Arabidopsis thaliana seedlings were determined in closed-chamber experiments. The increase in root and shoot biomass induced byT. atroviride VOCs was significantly lowered by ?noxR and ?nox1, but not by ?nox2. In terms of fungistatic activity at a distance, ?nox2 had a significant reduction in this trait against R. solani andS. sclerotiorum, while fungistasis was highly increased by ?noxR and ?nox1. Identification and quantification of individual VOCs in the blends emitted by the strains was performed by GC-MS, and the patterns of variation observed for individual volatiles, such as 6-Pentyl-2H-pyran-2-one (6PP-1) and (E)-6-Pent-1-enylpyran-2-one (6PP-2) were consistent with their negative effects on plant-growth promotion and positive effects on fungistasis at a distance. Nox1 and NoxR appear to have a ubiquitous regulatory role in a variety of developmental and interactive processes in T. atroviride,either as positive or negative modulators. Nox2 may also have a role in regulating production of VOCs with fungistatic activity

    Mechanisms of growth promotion by members of the rhizosphere fungal genus Trichoderma

    No full text
    Trichoderma spp. are best known for their biocontrol capabilities against a range of phytopathogenic microorganisms and increased plant drought tolerance. However, all the attributes of Trichoderma are also related to their ability to induce plant growth promotion by direct or indirect mechanisms. The activation of these mechanisms might be dependent on the ability of Trichoderma to respond to the environmental conditions and host plant.Our research work on Trichoderma has been supported by the Tertiary Education Commission, New Zealand through the Bio-Protection Research Centre, Marsden Fund, and Lincoln University Research Fund

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    No full text
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42·4% vs 44·2%; absolute difference -1·69 [-9·58 to 6·11] p=0·67; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5-8] vs 6 [5-8] cm H2O; p=0·0011). ICU mortality was higher in MICs than in HICs (30·5% vs 19·9%; p=0·0004; adjusted effect 16·41% [95% CI 9·52-23·52]; p<0·0001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0·80 [95% CI 0·75-0·86]; p<0·0001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status
    corecore