5,098 research outputs found

    Phase Separation in Lix_xFePO4_4 Induced by Correlation Effects

    Full text link
    We report on a significant failure of LDA and GGA to reproduce the phase stability and thermodynamics of mixed-valence Lix_xFePO4_4 compounds. Experimentally, Lix_xFePO4_4 compositions (0≤x≤10 \leq x \leq 1) are known to be unstable and phase separate into Li FePO4_4 and FePO4_4. However, first-principles calculations with LDA/GGA yield energetically favorable intermediate compounds an d hence no phase separation. This qualitative failure of LDA/GGA seems to have its origin in the LDA/GGA self-interaction which de localizes charge over the mixed-valence Fe ions, and is corrected by explicitly considering correlation effects in this material. This is demonstrated with LDA+U calculations which correctly predict phase separation in Lix_xFePO4_4 for U−J≳3.5U-J \gtrsim 3.5eV. T he origin of the destabilization of intermediate compounds is identified as electron localization and charge ordering at different iron sites. Introduction of correlation also yields more accurate electrochemical reaction energies between FePO4_4/Lix_xFePO4_ 4 and Li/Li+^+ electrodes.Comment: 12 pages, 5 figures, Phys. Rev. B 201101R, 200

    Use of glide-ins in CMS for production and analysis

    Get PDF
    With the evolution of various grid federations, the Condor glide-ins represent a key feature in providing a homogeneous pool of resources using late-binding technology. The CMS collaboration uses the glide-in based Workload Management System, glideinWMS, for production (ProdAgent) and distributed analysis (CRAB) of the data. The Condor glide-in daemons traverse to the worker nodes, submitted via Condor-G. Once activated, they preserve the Master-Worker relationships, with the worker first validating the execution environment on the worker node before pulling the jobs sequentially until the expiry of their lifetimes. The combination of late-binding and validation significantly reduces the overall failure rate visible to CMS physicists. We discuss the extensive use of the glideinWMS since the computing challenge, CCRC-08, in order to prepare for the forthcoming LHC data-taking period. The key features essential to the success of large-scale production and analysis on CMS resources across major grid federations, including EGEE, OSG and NorduGrid are outlined. Use of glide-ins via the CRAB server mechanism and ProdAgent, as well as first hand experience of using the next generation CREAM computing element within the CMS framework is discussed

    Community Awareness of HPV Screening and Vaccination in Odisha

    Get PDF
    Introduction. A number of new technologies including cervical cancer screening and vaccination have introduced new tools in the fight against cervical cancer. Methods. This study was set in Odisha, India, at the Acharya Harihar Regional Cancer Center and study research infrastructure at the Asian Institute of Public Health. IRB approvals were obtained and a research assistant recruited 286 women aged 18–49 years, who provided informed consent and completed a survey tool. Data were entered into EpiData software and statistical analysis was conducted. Results. 76.3% women participants were married, 45.5% had sexual debut at age 21 or greater, 60.5% used contraception, 12.2% reported having a Pap smear in the past, and 4.9% reported having prior genital warts. Most, 68.8% had never heard of HPV and 11.9% were aware that HPV is the main cause of cervical cancer. 82.9% women thought that vaccinations prevent disease, and 74.8% said they make the decision to vaccinate their children. Conclusion. The Odisha community demonstrated a low level of knowledge about cervical cancer prevention, accepted vaccinations in the prevention of disease and screening, and identified mothers/guardians as the key family contacts

    Supersymmetry discovery potential of the LHC at s=\sqrt{s}=10 and 14 TeV without and with missing ETE_T

    Full text link
    We examine the supersymmetry (SUSY) reach of the CERN LHC operating at s=10\sqrt{s}=10 and 14 TeV within the framework of the minimal supergravity model. We improve upon previous reach projections by incorporating updated background calculations including a variety of 2→n2\to n Standard Model (SM) processes. We show that SUSY discovery is possible even before the detectors are understood well enough to utilize either ETmissE_T^{\rm miss} or electrons in the signal. We evaluate the early SUSY reach of the LHC at s=10\sqrt{s}=10 TeV by examining multi-muon plus ≥4\ge4 jets and also dijet events with {\it no} missing ETE_T cuts and show that the greatest reach in terms of m1/2m_{1/2} occurs in the dijet channel. The reach in multi-muons is slightly smaller in m1/2m_{1/2}, but extends to higher values of m0m_0. We find that an observable multi-muon signal will first appear in the opposite-sign dimuon channel, but as the integrated luminosity increases the relatively background-free but rate-limited same-sign dimuon, and ultimately the trimuon channel yield the highest reach. We show characteristic distributions in these channels that serve to distinguish the signal from the SM background, and also help to corroborate its SUSY origin. We then evaluate the LHC reach in various no-lepton and multi-lepton plus jets channels {\it including} missing ETE_T cuts for s=10\sqrt{s}=10 and 14 TeV, and plot the reach for integrated luminosities ranging up to 3000 fb−1^{-1} at the SLHC. For s=10\sqrt{s}=10 TeV, the LHC reach extends to mgluino=1.9,2.3,2.8m_{gluino}=1.9, 2.3, 2.8 and 2.9 TeV for msquark∼mgluinom_{squark}\sim m_{gluino} and integrated luminosities of 10, 100, 1000 and 3000 fb−1^{-1}, respectively. For s=14\sqrt{s}=14 TeV, the LHC reach for the same integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for ab^-1 integrated luminosities, with minor corrections of references and text. 2 figures added. To appear in JHE

    Size-dependent spinodal and miscibility gaps for intercalation in nano-particles

    Full text link
    Using a recently-proposed mathematical model for intercalation dynamics in phase-separating materials [Singh, Ceder, Bazant, Electrochimica Acta 53, 7599 (2008)], we show that the spinodal and miscibility gaps generally shrink as the host particle size decreases to the nano-scale. Our work is motivated by recent experiments on the high-rate Li-ion battery material LiFePO4; this serves as the basis for our examples, but our analysis and conclusions apply to any intercalation material. We describe two general mechanisms for the suppression of phase separation in nano-particles: (i) a classical bulk effect, predicted by the Cahn-Hilliard equation, in which the diffuse phase boundary becomes confined by the particle geometry; and (ii) a novel surface effect, predicted by chemical-potential-dependent reaction kinetics, in which insertion/extraction reactions stabilize composition gradients near surfaces in equilibrium with the local environment. Composition-dependent surface energy and (especially) elastic strain can contribute to these effects but are not required to predict decreased spinodal and miscibility gaps at the nano-scale

    Antimicrobial activity of MgB2 powders produced via reactive liquid infiltration method

    Get PDF
    We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar

    Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO4 electrodes during charge/discharge cycling of lithium batteries

    No full text
    The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate

    Trunk girdling increased stomatal conductance in Cabernet Sauvignon Grapevines, reduced glutamine, and increased malvidin-3-glucoside and quercetin-3-glucoside concentrations in skins and pulp at harvest.

    Get PDF
    Girdling is a traditional horticultural practice applied at fruit set or other phenological stages, and is used mostly as a vine management. In grapevines, it is used primarily for table grapes to improve berry weight, sugar content, color, and to promote early harvest. The objective of this study was to evaluate the effect of trunk girdling applied at veraison, in ?Cabernet Sauvignon? wine grapes (Vitis vinifera L.), on agronomical and physiological parameters during vine development from the onset of ripening (veraison) to harvest, and additionally to quantify the effect of girdling on primary and secondary metabolism. Girdling was applied 146 days after pruning (dap) at veraison, when berry sampling for metabolomics and agronomical evaluations commenced, with a further three sampling dates until harvest, at 156 dap (30% maturation, 10 days after girdling-dag), 181 dap (70% maturation, 35 dag), and 223 dap (commercial harvest, 77 dag). Skin/pulp and seed tissues were extracted separately and metabolomics was performed using one-dimensional proton nuclear magnetic resonance (1D 1H NMR) spectroscopy and high performance liquid chromatography (HPLC-DAD). At harvest, girdling significantly increased stomatal conductance (gs) in vines, decreased glutamine concentrations, and increased anthocyanin and flavonol concentrations in the skin/pulp tissues of grape berries. Berry weight was reduced by 27% from 181 dap to harvest, and was significantly higher in grapes from girdled vines at 181 dap. Sugars, organic acids, and other amino acids in skin/pulp or seeds were not significantly different, possibly due to extra-fascicular phloem vessels transporting metabolites from leaves to the roots. Using a metabolomics approach, differences between skin/pulp and seeds tissues were meaningful, and a greater number of secondary metabolites in skin/pulp was affected by girdling than in seeds. Girdling is a simple technique that could easily be applied commercially on vine management to improve berry color and other phenolics in ?Cabernet Sauvignon? grapes. Keywords: amino acids, biosynthesis, grape and wine, 1H NMR spectroscopy, metabolome, organic acids, phenolic compounds and sugars, Vitis vinifera L
    • …
    corecore