158 research outputs found

    A Semi-parametric Technique for the Quantitative Analysis of Dynamic Contrast-enhanced MR Images Based on Bayesian P-splines

    Full text link
    Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the non-linear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome this problems, this paper proposes a semi-parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided

    Bone imaging in prostate cancer: the evolving roles of nuclear medicine and radiology

    Get PDF
    The bone scan continues to be recommended for both the staging and therapy response assessment of skeletal metastases from prostate cancer. However, it is widely recognised that bone scans have limited sensitivity for disease detection and is both insensitive and non-specific for determining treatment response, at an early enough time point to be clinically useful. We, therefore, review the evolving roles of nuclear medicine and radiology for this application. We have reviewed the published literature reporting recent developments in imaging bone metastases in prostate cancer, and provide a balanced synopsis of the state of the art. The development of single-photon emission computed tomography combined with computed tomography has improved detection sensitivity and specificity but has not yet been shown to lead to improvements in monitoring therapy. A number of bone-specific and tumour-specific tracers for positron emission tomography/computed tomography (PET/CT) are now available for advanced prostate cancer that show promise in both clinical settings. At the same time, the development of whole-body magnetic resonance imaging (WB-MRI) that incorporates diffusion-weighted imaging also offers significant improvements for detection and therapy response assessment. There are emerging data showing comparative SPECT/CT, PET/CT, and WB-MRI test performance for disease detection, but no compelling data on the usefulness of these technologies in response assessment have yet emerged

    Personalizing prostate cancer diagnosis with multivariate risk prediction tools: how should prostate MRI be incorporated?

    Get PDF
    Risk-based patient selection for systematic biopsy in prostate cancer diagnosis has been adopted in daily clinical practice, either by clinical judgment and PSA testing, or using multivariate risk prediction tools. The use of multivariable risk prediction tools can significantly reduce unnecessary systematic biopsies, without compromising the detection of clinically significant disease. Increasingly multi-parametric magnetic resonance imaging (MRI) is performed, not only in men with a persistent suspicion of prostate cancer after prior negative systematic biopsy, but also at initial screening before the first biopsy. The combination of MRI and multivariate risk prediction tools could potentially enhance prostate cancer diagnosis using multivariate MRI incorporated risk-based models to decide on the need for prostate MRI, but also using MRI results to adjusted risk-based models, and to guide MRI-directed biopsies. In this review, we discuss the diagnostic work-up for clinically significant prostate cancer, where the combination of MRI and multivariate risk prediction tools is integrated, and how together they can contribute to personalized diagnosis

    Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review

    Get PDF
    CONTEXT: There is a lack of comprehensive data regarding the factors that influence the diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) to detect and localize clinically significant prostate cancer (csPCa). OBJECTIVE: To systematically review the current literature assessing the factors influencing the variability of mpMRI performance in csPCa diagnosis. EVIDENCE ACQUISITION: A computerized bibliographic search of Medline/PubMed database was performed for all studies assessing magnetic field strength, use of an endorectal coil, assessment system used by radiologists and inter-reader variability, experience of radiologists and urologists, use of a contrast agent, and use of computer-aided diagnosis (CAD) tools in relation to mpMRI diagnostic accuracy. EVIDENCE SYNTHESIS: A total of 77 articles were included. Both radiologists' reading experience and urologists'/radiologists' biopsy experience were the main factors that influenced diagnostic accuracy. Therefore, it is mandatory to indicate the experience of the interpreting radiologists and biopsy-performing urologists to support the reliability of the findings. The most recent Prostate Imaging Reporting and Data System (PI-RADS) guidelines are recommended for use as the main assessment system for csPCa, given the simplified and standardized approach as well as its particular added value for less experienced radiologists. Biparametric MRI had similar accuracy to mpMRI; however, biparametric MRI performed better with experienced readers. The limited data available suggest that the combination of CAD and radiologist readings may influence diagnostic accuracy positively. CONCLUSIONS: Multiple factors affect the accuracy of mpMRI and MRI-targeted biopsy to detect and localize csPCa. The high heterogeneity across the studies underlines the need to define the experience of radiologists and urologists, implement quality control, and adhere to the most recent PI-RADS assessment guidelines. Further research is needed to clarify which factors impact the accuracy of the MRI pathway and how. PATIENT SUMMARY: We systematically reported the factors influencing the accuracy of multiparametric magnetic resonance imaging (mpMRI) in detecting clinically significant prostate cancer (csPCa). These factors are significantly related to each other, with the experience of the radiologists being the dominating factor. In order to deliver the benefits of mpMRI to diagnose csPCa, it is necessary to develop expertise for both radiologists and urologists, implement quality control, and adhere to the most recent Prostate Imaging Reporting and Data System assessment guidelines

    Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer?

    Get PDF
    Abnormal metabolism is a key tumor hallmark. Proton magnetic resonance spectroscopy (1H-MRS) allows measurement of metabolite concentration that can be utilized to characterize tumor metabolic changes. 1H-MRS measurements of specific metabolites have been implemented in the clinic. This article performs a systematic review of image acquisition and interpretation of 1H-MRS for cancer evaluation, evaluates its strengths and limitations, and correlates metabolite peaks at 1H-MRS with diagnostic and prognostic parameters of cancer in different tumor types

    Whole-body MRI compared with standard pathways for staging metastatic disease in lung and colorectal cancer: the Streamline diagnostic accuracy studies.

    Get PDF
    BACKGROUND: Whole-body magnetic resonance imaging is advocated as an alternative to standard pathways for staging cancer. OBJECTIVES: The objectives were to compare diagnostic accuracy, efficiency, patient acceptability, observer variability and cost-effectiveness of whole-body magnetic resonance imaging and standard pathways in staging newly diagnosed non-small-cell lung cancer (Streamline L) and colorectal cancer (Streamline C). DESIGN: The design was a prospective multicentre cohort study. SETTING: The setting was 16 NHS hospitals. PARTICIPANTS: Consecutive patients aged ≥ 18 years with histologically proven or suspected colorectal (Streamline C) or non-small-cell lung cancer (Streamline L). INTERVENTIONS: Whole-body magnetic resonance imaging. Standard staging investigations (e.g. computed tomography and positron emission tomography-computed tomography). REFERENCE STANDARD: Consensus panel decision using 12-month follow-up data. MAIN OUTCOME MEASURES: The primary outcome was per-patient sensitivity difference between whole-body magnetic resonance imaging and standard staging pathways for metastasis. Secondary outcomes included differences in specificity, the nature of the first major treatment decision, time and number of tests to complete staging, patient experience and cost-effectiveness. RESULTS: Streamline C - 299 participants were included. Per-patient sensitivity for metastatic disease was 67% (95% confidence interval 56% to 78%) and 63% (95% confidence interval 51% to 74%) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference in sensitivity of 4% (95% confidence interval -5% to 13%; p = 0.51). Specificity was 95% (95% confidence interval 92% to 97%) and 93% (95% confidence interval 90% to 96%) respectively, a difference of 2% (95% confidence interval -2% to 6%). Pathway treatment decisions agreed with the multidisciplinary team treatment decision in 96% and 95% of cases, respectively, a difference of 1% (95% confidence interval -2% to 4%). Time for staging was 8 days (95% confidence interval 6 to 9 days) and 13 days (95% confidence interval 11 to 15 days) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference of 5 days (95% confidence interval 3 to 7 days). The whole-body magnetic resonance imaging pathway was cheaper than the standard staging pathway: £216 (95% confidence interval £211 to £221) versus £285 (95% confidence interval £260 to £310). Streamline L - 187 participants were included. Per-patient sensitivity for metastatic disease was 50% (95% confidence interval 37% to 63%) and 54% (95% confidence interval 41% to 67%) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference in sensitivity of 4% (95% confidence interval -7% to 15%; p = 0.73). Specificity was 93% (95% confidence interval 88% to 96%) and 95% (95% confidence interval 91% to 98%), respectively, a difference of 2% (95% confidence interval -2% to 7%). Pathway treatment decisions agreed with the multidisciplinary team treatment decision in 98% and 99% of cases, respectively, a difference of 1% (95% confidence interval -2% to 4%). Time for staging was 13 days (95% confidence interval 12 to 14 days) and 19 days (95% confidence interval 17 to 21 days) for whole-body magnetic resonance imaging and standard pathways, respectively, a difference of 6 days (95% confidence interval 4 to 8 days). The whole-body magnetic resonance imaging pathway was cheaper than the standard staging pathway: £317 (95% confidence interval £273 to £361) versus £620 (95% confidence interval £574 to £666). Participants generally found whole-body magnetic resonance imaging more burdensome than standard imaging but most participants preferred the whole-body magnetic resonance imaging staging pathway if it reduced time to staging and/or number of tests. LIMITATIONS: Whole-body magnetic resonance imaging was interpreted by practitioners blinded to other clinical data, which may not fully reflect how it is used in clinical practice. CONCLUSIONS: In colorectal and non-small-cell lung cancer, the whole-body magnetic resonance imaging staging pathway has similar accuracy to standard staging pathways, is generally preferred by patients, improves staging efficiency and has lower staging costs. Future work should address the utility of whole-body magnetic resonance imaging for treatment response assessment. TRIAL REGISTRATION: Current Controlled Trials ISRCTN43958015 and ISRCTN50436483. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 66. See the NIHR Journals Library website for further project information
    corecore