731 research outputs found

    Single-pixel imaging 12 years on: a review

    Get PDF
    Modern cameras typically use an array of millions of detector pixels to capture images. By contrast, single-pixel cameras use a sequence of mask patterns to filter the scene along with the corresponding measurements of the transmitted intensity which is recorded using a single-pixel detector. This review considers the development of single-pixel cameras from the seminal work of Duarte et al. up to the present state of the art. We cover the variety of hardware configurations, design of mask patterns and the associated reconstruction algorithms, many of which relate to the field of compressed sensing and, more recently, machine learning. Overall, single-pixel cameras lend themselves to imaging at non-visible wavelengths and with precise timing or depth resolution. We discuss the suitability of single-pixel cameras for different application areas, including infrared imaging and 3D situation awareness for autonomous vehicles

    Real-time computational photon-counting LiDAR

    Get PDF
    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles

    PyroScan: Wildfire Behavior Prediction System

    Get PDF
    During a wildfire, it is of the utmost importance to be updated about all information of the wildfire. Wind speed, wind direction and dry grass often works as fuel for the fire allowing it to spread in multiple directions. These different factors are often issues for any firefighting organization that is trying to help fight the fire. An uncontrolled wildfire is often a threat to wildlife, property, and worse, human and animal lives. In our paper, we propose an artificial intelligence (AI) powered fire tracking and prediction application utilizing Unmanned Aerial Vehicles (UAV) to inform fire fighters regarding the probability of the direction of a fire. Our work is finally aimed to assist firefighters to know which front would need to be attended first based on wind speed, wind direction, dry grass, etc. The UAV will use the powers of a mounted camera and computer vision to capture and calculate the current trajectory and rate of spread from an overhead live feed of the fire. Currently, we use the powers of classic Computer Vision techniques to identify a fire, and then using Kalman Filters, track the direction of it. Based on our results, we believe that this work can generate meaningful information which will help firefighters protect property damage and even save lives

    Measurement of the spin-orbit coupling interaction in ring-core optical fibers

    Get PDF
    Ring-core optical fibers have been designed to carry orbital angular momentum modes. We demonstrate the imaging of these modes, individually identifying modes separated temporally by only 30 ps. A single-pixel camera operating in the short-wave infrared detection range is used to image the 1550 nm wavelength optical modes. With this technique, examination of these optical modes can be performed with significantly higher temporal resolution than is possible with conventional imaging systems, such that the imaging of modes separated by spin-orbit coupling is achieved and evaluated. Deconvolution is required to separate the instrument response from the optical mode signal, increasing the clarity and temporal resolution of the measurement system

    A light-in-flight single-pixel camera for use in the visible and short-wave infrared

    Get PDF
    This is the final version. Available on open access from the Optical Society of America via the DOI in this recordSingle-pixel cameras reconstruct images from a stream of spatial projection measurements recorded with a single-element detector, which itself has no spatial resolution. This enables the creation of imaging systems that can take advantage of the ultra-fast response times of single-element detectors. Here we present a single-pixel camera with a temporal resolution of 200 ps in the visible and short-wave infrared wavelengths, used here to study the transit time of distinct spatial modes transmitted through few-mode and orbital angular momentum mode conserving optical fiber. Our technique represents a way to study the spatial and temporal characteristics of light propagation in multimode optical fibers, which may find use in optical fiber design and communications.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 2020Office of Naval Research (ONR)National Science Foundation (NSF

    How many photons does it take to form an image?

    Get PDF
    If a picture tells a thousand words, then we might ask ourselves how many photons does it take to form a picture? In terms of the transmission of the picture information, then the multiple degrees of freedom (e.g., wavelength, polarization, and spatial mode) of the photon mean that high amounts of information can be encoded such that the many pixel values of an image can, in principle, be communicated by a single photon. However, the number of photons required to transmit the image information is not necessarily, at least technically, the same as the number of photons required to image an object. Therefore, another equally important question is how many photons does it take to measure an unknown image

    Young Adults with Cleft Lip and Palate: Personal Perspectives of Transition of Care

    Get PDF
    Children with cleft lip/palate receive team care which typically ends at eighteen. Young adults then need to transition into an adult-centered model of care. A paucity of literature exists regarding their perspective on transition of care experience. This research explores the experiences of young adults with CLP regarding their transition of care process, within the person-centered ICF framework

    Optimising backscatter from multiple beam interference

    Get PDF
    Optical sensing applications are usually reliant on the intensity of the measured signal. For remote sensing applications where a target is probed with a laser beam, the sensitivity will be limited by the amount of backscattered light returned from the target to the detector. We demonstrate a method of increasing the signal returned to the detector by illuminating the target with a number of independently controlled beams, where both the position and phase are optimised. We show an improvement in the backscattered signal that is proportional to the number of beams used. The method is demonstrated within a laser microphone, measuring audio signal due to vibrations in surfaces, showing a significant improvement in the signal-to-noise of the measurement
    • …
    corecore