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Abstract: Modern cameras typically use an array of millions of detector pixels to capture
images. By contrast, single-pixel cameras use a sequence of mask patterns to filter the scene
along with the corresponding measurements of the transmitted intensity which is recorded using
a single-pixel detector. This review considers the development of single-pixel cameras from
the seminal work of Duarte et al. up to the present state of the art. We cover the variety of
hardware configurations, design of mask patterns and the associated reconstruction algorithms,
many of which relate to the field of compressed sensing and, more recently, machine learning.
Overall, single-pixel cameras lend themselves to imaging at non-visible wavelengths and with
precise timing or depth resolution. We discuss the suitability of single-pixel cameras for different
application areas, including infrared imaging and 3D situation awareness for autonomous vehicles.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The concept of single-pixel imaging followed the development of compressive sensing [1-4] and
was reported soon after in a seminal paper by Duarte et al. at Rice University [5]. This pioneering
work is a combination of different imaging and sampling techniques which has inspired the field
of single-pixel imaging, laying the foundations for recovering images from a single-pixel camera
when the number of measurements is fewer than the total number of unknown pixels in the image,
that is, when the properties of the image are sensed compressively, also known as under-sampling
or sub-sampling.

Prior to this work, in 2005, Sen et al. had published the paper “Dual Photography” [6] which
proposed the idea that an image could be captured using just a single photodetector (single-pixel
detector) rather than a detector array as used by most common imaging devices such as mobile
phones and digital SLR cameras. Here, the spatial structure is provided by interrogating a
scene with a series of spatially resolved patterns while measuring the correlated intensities
using the single-pixel detector. The development of silicon-based charge-coupled device (CCD)
and complementary metal-oxide-semiconductor (CMOS) pixelated sensors has brought the
benefits of cheap, high-performance, imaging technologies for many applications in the visible
(VIS) wavelength spectrum. However, single-pixel detectors can bring significant performance
advantages such as sensitivity at non-visible wavelengths or very precise timing resolution, both
of which can be impractical or prohibitively costly to implement as a pixelated imaging device.

A popular choice for non-visible wavelength single-pixel imaging has been in the short-wave
infrared (SWIR) spectral region (approximately 1-3 um) due to the availability of detectors
having a good sensitivity [7,8]. In particular, telecoms research has provided a range of InGaAs
devices which has allowed both cost-effective detectors and illumination sources to be developed
(operating in the 800 nm to 1800 nm range). This wavelength range has been shown to be
particularly suited to imaging through scattering media, such as smoke [8], and has also been
used to detect and image hydrocarbon gas leaks [9].
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Single-pixel imaging has provided an ideal test platform for new state-of-the-art detector
technologies, allowing the development of cost-effective imaging systems at wavelengths across
the electromagnetic spectrum. Examples include x-ray imaging [10-12], terahertz imaging
[13—15], compressive radar [16], a VIS-NIR telescope [17] and fluorescence microscopy [18].
They have also utilised various sampling schemes including compressive sensing and machine
learning. Figure 1 shows a timeline of the development of a range of single-pixel imaging
systems, including a range of modulation technologies and sampling schemes.
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Fig. 1. Timeline of developments in single-pixel imaging. Publications are shown by year
and highlight the modulation technology and sampling scheme used. It is interesting to note
that systems based on a structured detection approach, and employ sampling schemes such as
compressive sensing (CS) or machine learning (ML), are often termed single-pixel cameras,
whereas those based on structured illumination are often referred to as computational ghost
imaging. The following references are shown: Sen 2005 [6], Candes 2006 [4], Candes 2007
[19], Duarte 2008 [5], Howland 2011 [20], Howland 2013 [21], Shrekenhamer 2013 [14],
Yu 2014 [17], Hornett 2016 [15], Stantchev 2017 [22], Higham 2018 [23], Gatti 2004 [24],
Valencia 2005 [25], Shapiro 2008 [26], Katz 2009 [27], Bromberg 2009 [28], Ferri 2010
[29], Sun 2013 [30], Zhang 2015 [31], Yu 2016 [11], Xu 2018 [32] and Radwell 2019 [33].

A particular application that has recently attracted much attention is single-pixel imaging
using time-of-flight (ToF) measurements, which can be used to recover 3D profiles of a scene
from a distance. When combined with the recent advances in machine learning algorithms,
single-pixel imaging shows promise as a powerful technique for low-cost, scan-free, 3D sensing
and classification. This paper provides a review of single-pixel imaging techniques, including
that of the closely related field of computational ghost imaging (computational GI), and focuses
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on the main algorithm and hardware developments over the past twelve years. There are still
many discussions on the distinction between single-pixel and computational GI. In this paper we
discuss them with respect to their common terminology in the literature; single-pixel imaging
often seeks to solve an inverse problem, whereas computational GI often seeks to perform a
reconstruction from an ensemble average.

2. Basics of single-pixel imaging

A simple method of capturing an image using a single-pixel detector is to sequentially measure
each pixel in turn, as in the raster-scan approach used in the original mechanical televisor of
John Logie Baird [34]. However, sequentially measuring information on only one pixel in turn
is an inefficient use of the available illumination light. A more common scan strategy is to
use a sequence of spatially resolved patterns and to record the intensity measurements of the
correlations between the patterns and the object, or scene. This correlation measurement can be
performed in one of two ways. A light modulator placed in the image plane of a camera lens can
be used to mask images of the scene, the filtered intensities being measured by the single-pixel
detector. This mode of operation is commonly referred to as structured detection (see Fig. 2),
and is often used in the field of single-pixel imaging or single-pixel cameras. Alternatively, the
light modulator can be used to project patterns onto the scene and the single-pixel detector used
to measure the back scattered intensities. This mode of operation (shown in Fig. 3) is commonly
referred to as structured illumination, and is often used in the field of computational GI (discussed
in detail in section 3). In both these configurations the conventional light source can be replaced
with a pulsed laser (also shown in Fig. 3) so as to provide time-of-flight information and hence
depth of the scene (discussed in detail in section 6.2). Section 4 discusses some of the modulation
technologies commonly used in single-pixel imaging.

The object or scene can be reconstructed by multiplying each pattern in the sequence by
the corresponding single-pixel intensity measurement, resulting in a set of weighted patterns
that can be summed to form an image. In principle, reconstructing an image comprising of N
pixels in total requires a sequence of M = N different patterns. However, if the set consists of
non-orthogonal patterns and / or the measurements are subjected to noise then a large number
M > N measurements are needed in order to achieve a good signal to noise ratio (SNR) of the
final image. A common approach is to use an orthogonal pattern set, such as the Hadamard basis
(see section 5), and measure the differential intensity for each pattern and its contrast inverse (i.e.
photographic negative).

Given a sequence of N-element orthonormal pattern pairs P(y,),, (Where m is the pattern
sequence number), the corresponding differential intensity signals between the positive and
inverse patterns are S,,, which are proportional to the correlations between each pattern and
the scene. Based on M patterns, the 2D image estimate of the object or scene, O y) y, can be
obtained by

M
1
Ocey\ = 37 Z SinPxy)m (D
m=1

It is clear that a means of significantly reducing the number of required patterns, and
measurements, is necessary for single-pixel imaging systems to be widely adopted. Compressive
sensing (CS) [3,35,36] has been shown to be a route for exploiting the redundancy in the structure
of most natural signals or images. CS is based on the principle that most natural images are sparse
when expressed in the appropriate basis, i.e. a basis having many coefficients that are close, or
equal, to zero. This is the case for image compression algorithms such as JPEG [37,38] or JPEG
2000 [39]. CS enables image reconstruction with far fewer measurements than are required for
conventional sampling schemes, allowing faster data acquisition or higher SNR [27]. However,
despite the focus on faster imaging, or imaging with improved SNR, many sensing problems do
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Fig. 2. Structured detection setup. a) A digital micromirror device (DMD) can be used to
spatially filter light by selectively redirecting parts of an incident light beam at +24° to the
normal, corresponding to the individual DMD micromirrors being in the “on” or “off” state
respectively. An object is flood-illuminated and imaged onto the DMD, where a sequence of
binary patterns displayed on the DMD can be used to mask, or filter, the image. A single
photodetector is used to measure the total filtered intensity for each mask pattern, allowing
an image of the object to be reconstructed. b) Each pattern in the sequence is then multiplied
by the corresponding single-pixel intensity measurement to give a set of weighted patterns
that can be summed to reconstruct the image.
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Fig. 3. Structured illumination with time-of-flight. a) In an alternative configuration, the
DMD is used to project a sequence of light patterns onto a scene and the single-pixel detector
measures the total back scattered intensity. For both structured illumination and structured
detection a pulsed laser can be used as the illumination source to perform temporal resolution
measurements using a single-pixel detector (as shown here). Recording the temporal form
of the back scattered light provides a measure of the distance travelled by the light and hence
depth of the scene. b) Similar to the structured detection scheme, the sequence of projected
patterns and the corresponding intensity measurements allows an image to be reconstructed.
In the case where a pulsed laser is used, the additional time-of-flight information from the
broadened back scattered pulse allows a depth map of the scene to be constructed.
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not require the full signal to be reconstructed. This is the case in applications such as detection or
classification [40]. In the case of compressive classification, the resulting dimensionally reduced
matched filters are sometimes termed “smashed filters” [41]. Image-free classification is also
discussed in section 8 when using machine learned sampling schemes.

3. Computational ghost imaging

A field that is very closely related to single-pixel imaging is that of ghost imaging (GI), which is a
technique that exploits the quantum nature of the entangled photon pairs produced in spontaneous
parametric down-conversion [42]. A pump laser incident on a nonlinear crystal produces the
photon pairs, often termed the signal and idler, which are entangled in their positions and hence,
measuring the position of one implies the position of the other. The signal and idler beams are
separated along different paths, one is measured by a spatially resolved detector such as a CCD
or scanning pinhole and photodetector, the other interacts with the target object and is collected
by a single-pixel detector (in GI this is often referred to as a bucket detector). Importantly, the
light captured by the CCD never interacts with the target object. Only by correlating the CCD
and bucket detector measurements can the “ghost” image be revealed [43]. Whilst originally
demonstrated using degenerate signal and idler photons at 702 nm, GI has also been achieved
at other wavelengths, including a demonstration using non-degenerate photons at 1550 nm and
460 nm [44]. GI has even been achieved using two beams formed by correlated pairs of ultracold
metastable helium atoms [45].

However, it was soon realised that while GI was originally designed to exploit the quantum
nature of light, it was also possible to be performed in a classical experiment [24,46]. Similar
to the quantum experiment, a structured illumination light field is split into two near identical
beams, usually termed the reference and object beams. The reference beam is recorded by the
CCD while the object beam impinges upon the target object, and the scattered or transmitted
light is then measured by the bucket detector. Bennink et al. [47] demonstrated coincidence
imaging using a classical light source made by chopping and deflecting a laser beam, creating
pairs of angularly correlated pulses. However, in most of the early examples of classical GI
the object being imaged was illuminated by a time-dependent speckle pattern, generated by
passing a collimated laser beam through a rotating ground-glass diffuser [25,48,49] (see section
4.1 for a discussion on pseudothermal modulation schemes). A simple beamsplitter copies this
pseudothermal source into the reference and object beams.

The classical form of GI was developed further by Shapiro [26], who proposed the use of a
computer controlled spatial light modulator (SLM) for creating the speckle patterns to illuminate
the object. Since the patterns are predetermined using a computational method, the beamsplitter
and CCD sensor are no longer required as it is no longer necessary to record the illumination
beam, only the synchronised intensity measurements from the bucket detector are required in
order to reconstruct the image. This form of GI, often referred to as computational GI, was
demonstrated experimentally by Bromberg et al. [28] and shortly afterwards was demonstrated
experimentally using compressive sensing [27]. Erkmen and Shapiro [50] provide a useful review
of quantum, classical and computational ghost imaging.

Similar to the discussion in section 2, if the number of resolution cells “speckles” within the
illumination pattern is N, one needs in principle at least M = N different patterns in order to fully
reconstruct the image of the object. In practice, since these correlation methods are statistical
in nature, there is spatial overlap between the different speckle patterns and hence they form a
non-orthogonal measurement basis. A large number M >> N measurements are therefore needed
in order to achieve a SNR > 1 [27]. A major downside to classical GI was the large background
level in the reconstructed images compared to that achieved using a quantum source. Methods
of improving the SNR of GI systems were soon proposed, with differential GI being the most
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widely adopted [29]. Here, a differential bucket detector signal measurement is employed which
is sensitive only to the fluctuating part of the intensity signal.

There have been useful comparisons of computational GI systems to single-pixel cameras [51].
In particular, computational GI can be compared to the original work on dual photography [6]
which is a novel photographic technique that exploits Helmholtz reciprocity to interchange the
lights and cameras in a scene [52,53]. This can also be compared to the work of Sun et al. [30]
where four spatially separated single-pixel detectors are used to obtain a 3D reconstruction of an
object (see section 6 for a discussion on 3D imaging and ranging). Despite being commonly
treated as separate research fields, it has become obvious that, from an optical perspective,
computational GI and single-pixel imaging are the same. However, it is still convenient to
maintain a distinction between the two, where single-pixel imaging (or single-pixel cameras)
often use a structured detection scheme, and compressed sensing, whereas computational GI
often uses a structured illumination scheme. The difference between these two schemes can be
demonstrated by interchanging the locations of the light source and the detector in the setups
illustrated in Fig. 2 and Fig. 3.

4. Modulation schemes

As previously shown in Fig. 1, there are several choices regarding the modulation technologies
used to produce the patterns for either structured detection or structured illumination single-pixel
imaging systems. A useful table listing the advantages and disadvantages of various elements of
single-pixel imaging systems can be found in Ref. [54].

4.1. Pseudothermal

A source of pseudothermal light can be generated by passing a laser beam through a rotating
ground-glass diffuser [25]. In the case of a static diffuser a speckle pattern is generated, resulting
from the diffusively transmitted light that undergoes constructive and destructive interference in
different spatial regions. When the diffuser is rotated, the intensity cross-section of the resulting
optical beam varies with time. In order to avoid repetition of the light field every full rotation
of the diffuser, transmission through a turbid solution of microspheres can be used to further
spatially randomize the pattern [48]. The pseudothermal light that emerges compares in its
coherence properties to the light of an actual thermal source such as an LED [55]. As discussed
in section 3 an optical beamsplitter forms two near-identical copies of the light field which can
be used as the reference and object beams in a classical GI system.

The spectral properties of the pseudothermal source is determined by the properties of the
materials from which it is made. Yu et al. [11] demonstrated a GI system using a pseudothermal
x-ray source produced by passing a monochromatic x-ray beam through a slit array and a movable
porous gold film. More recently, Zhang et al. [12] demonstrated an ultra-low radiation x-ray GI
system where the pseudothermal source is generated using a polychromatic x-ray source and a
sheet of rotating sandpaper. Here, the spatial structure of the illumination is similar to the speckle
pattern produced using a laser and rotating ground-glass diffuser, however, this is now due to
absorption rather than laser interference. The characteristics of these speckle-like features are
determined by the size and transmission properties of the silicon carbide grains in the sandpaper.

4.2.  Liquid crystal spatial light modulators

Pseudothermal light beams can also be generated by applying controllable random phase masks,
¢,(x,y), using a liquid crystal spatial light modulator (LC-SLM), a computer-controlled diffractive
optical element which has enhanced a number of research fields in recent years. LC-SLMs
impose a prescribed amount of phase shift at each pixel in an array by varying the local optical
path length. Typically, this is accomplished by controlling the local orientation of the molecules
in a nematic liquid crystal layer covering an array of electrodes. These are generally reflective
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devices and they have an associated diffraction efficiency, fill factor and overall reflectivity, which
determines their overall optical efficiency. Examples of computational GI schemes using an
LC-SLM with a single-pixel detector can be found in Shapiro [26] and Katz et al. [27].

4.3. Digital micromirror devices

Digital micromirror devices (DMDs), consisting of an array of hundreds of thousands of
individually addressable micromirrors, were originally developed for the display industry [56].
They offer a method of modulating light which is fast and works over a broad range of wavelengths.
Micromirrors can be individually oriented at +12°, with respect to the plane of the array, by
displaying a binary pattern on the DMD. The result is that light normally incident on the
DMD is redirected into two paths at £24° respectively i.e. 2 X +12°, as illustrated in Fig. 2.
In a typical single-pixel camera configuration the DMD is implemented as a programmable
binary transmission mask where only the path of light arising from the micromirrors in the “on”
state, corresponding to a value of “+1” in the binary pattern, is transmitted and the other path,
corresponding to “0”, is blocked. This can be used to structure the detected image intensities and
is commonly referred to as structured detection (as previously illustrated in Fig. 2). Alternatively,
the DMD can be used with a light source to project intensity patterns onto a scene, commonly
referred to as structured illumination (as previously illustrated in Fig. 3).

The use of light can be optimised by measuring the light in both the positive and negative
directions of the mirror tilt. Using two detectors in this manner enables a differential measurement
to be performed. However, this is more commonly achieved using just one detector by displaying
a pattern which is immediately followed by its contrast inverse. In addition, the background signal
noise is noticeably reduced with the differential scheme, especially in the presence of illumination
noise. Of course, this differential approach comes at the cost of doubling the number of binary
patterns that need to be displayed on the DMD and hence, an increase in the time required to
collect the data and reconstruct the image. However, DMDs are commercially available having
binary pattern display rates of 22.7 kHz, which for relatively low-resolution applications allows
near-video rate image reconstruction on a standard performance computer [8].

The superior modulation rate and broad wavelength response of available DMD systems, in
comparison to those based on liquid crystal technology, make DMDs the common choice for
use in computational imaging systems. They are particularly compatible with multi-spectral
applications, where a small number of different detector types are used to measure the correlated
intensities, assuming that the broad spectral response of the DMD is greater than the combined
spectral responses of the individual detectors. The aluminium micromirrors of the DMD
are compatible with light from the UV to the IR. However, careful consideration is required
when operating at the longer wavelengths due to diffraction effects arising from the pitch of
the micromirror array elements, typically 10-15 um for many devices. Despite this limitation,
standard DMDs can be used to indirectly modulate THz beams for THz single-pixel imaging
(even when using wavelengths typically hundreds of um). Stantchev et al. [57] used a DMD to
spatially modulate an 800 nm pump beam which was imaged onto the back of a silicon wafer
in order to modulate the THz beam. THz imaging systems have potential for applications in
non-invasive imaging of concealed structures, such as in the semiconductor manufacturing
industry. DMDs have also been demonstrated in other novel imaging applications. Gao et al.
demonstrated compressed ultrafast photography (CUP) by using a DMD with a streak camera
and based on compressed sensing [58], achieving single-shot CUP at one hundred billion frames
per second.

4.4. LED arrays

The limited frame rate of many single-pixel cameras and computational GI systems has limited
their use for dynamic imaging applications. Following the early demonstrations of single-pixel
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imaging, many research groups have utilized compressive sampling in order to significantly
reduce the number of mask patterns required to successfully reconstruct an image. However,
there is still a computational cost associated with compressive sampling schemes. Recently
Xu et al. [32] demonstrated a computational ghost imaging system that could continuously
capture 32 x 32 pixel images of a dynamic scene at a rate of 1000 fps, approximately two orders
of magnitude larger than other existing ghost imaging systems, by utilising an LED array for
high-speed structured illumination. This was achieved by utilising the very fast (<1 ps) switching
time of the LEDs, along with the symmetry present in the Hadamard basis set that was used.

5. Pattern choice

For a camera to image without using a pixelated sensor array we need to apply a series of masks to
acquire the spatial information. In the early days of television this was achieved using a physical
mask, a rotating Nipkow disc consisting of a spiral arrangement of holes [59]. The signal was
measured as each of the holes rotated past the scene, and line-by-line this would construct an
image [34,60]. The modern version of applying a mask is to use a DMD or SLM (see section
4), enabling the mask to be dynamic and displaying a set of carefully chosen masks. The mask
set, or sampling basis, can be chosen from a range of options for making a single-pixel image
measurement. The simplest method would be to emulate that of early television and measure
a single area per-pixel, effectively raster scanning a single pixel over the scene; this per-pixel
measurement works well with high light levels but is an inefficient use of the available light [5].

Gl using individual pairs of entangled photons takes many hundreds of individual measurements
to form an image [42]. As discussed in section 3, it is possible to project a pseudothermal light
field consisting of speckle patterns to perform classical GI but this again takes many measurements
to produce a useful image [24]. Section 7 discusses a range of strategies to perform compressive
sensing in order to reduce the number of measurements required when using a random basis set.
In contrast, an orthogonal basis set systematically samples the scene to acquire the image such
that an image is broken down into its component spatial frequencies and recorded.

5.1. Random binary

Sampling with speckle patterns could be simulated with random patterns [27,61]. These random
patterns could be grey-scale values, however if fast acquisition is desired then a DMD will be able
to project a series of binary patterns at much faster rates. These random patterns will reconstruct
the image [26], though it can take a very large number of samples to produce a low noise image
[30]. A more efficient sampling can be performed by using differential measurements, taking
measurements for both sides of the DMD by using two sensors and subtracting the measured
signals. The method can also be improved by using exactly half the pixels for each measurement
[29]. An example of the output of these differential measurements is shown in Fig. 4.

5.2. Hadamard transform

The Hadamard matrix can be used as a basis for various sensing and imaging applications, such as
recording the spatial frequencies of an image [62,63] or multiplexing the direction of illumination
in a scene [64,65]. In the case of a single-pixel camera, the use of a Hadamard basis to sample
the image was demonstrated by Duarte et al. [5]. The Hadamard patterns are orthogonal with
binary values of +1 or —1, the Hadamard matrix is derived from the initial matrix H, to produce
any 4k sized matrix.

Hy = , @)
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Fig. 4. A comparison of the patterns used for single-pixel imaging to reconstruct a 16 x 16
image. The random binary patterns will require a greater number of measurements to
reconstruct an image with high accuracy. Examples are shown of an image (128 x 128) with
the number of samples equal to the number of pixels (), and also for 10 and 100 times the
number of pixels. Patterns were measured with a differential measurement using a 50% split
in the binary selection. The Hadamard patterns and Fourier patterns are orthogonal and fully
sample the image, a noiseless sampling will reproduce the ground truth image with N and
4 X N patterns respectively.

H k-1 H k-1
Hy=|" ? 3)
Hyet —Hoien

These matrices are their own transpose such that HH' = nl,, meaning that image reconstruction
can be performed without matrix inversion. For image processing the naturally ordered Hadamard
matrices can use the Walsh-Hadamard transform to calculate the result of a Hadamard matrix
multiplied by a vector, with the existence of a fast Walsh-Hadamard transform (FWHT) making
minimal demand on the computation required [66]. The imaging masks are created for a N pixel
image (i.e. VN x VN) by using the Hadamard matrix of size N x N. Each row is reshaped to
be the size of the image and the signal can be measured for that matrix. An example of these
patterns is shown in Fig. 4. The final image is reconstructed as the Hadamard matrix multiplied
by the vector of measured signals S to produce a one-dimensional vector of the output image O
that requires to be reshaped into the 2D image,

O=H-S )

The orthogonality of the Hadamard basis is maintained when the elements of each of the patterns
is either +1 or —1, rather than the +1 or O that can be displayed on the DMD. Therefore, the
differential signal acquisition approach is commonly used when displaying Hadamard patterns.
To sample the scene a measurement must be performed for both the +1 and —1 Hadamard values;
this can be performed using either the two detector or single detector differential measurement
scheme as discussed in section 4.3. This differential measurement removes any offset in the image
due to background light, or slow variations in the illumination source brightness. However, this
differential approach comes at the cost of requiring twice the number of patterns to be displayed
on the DMD.

To demonstrate how the number of patterns can be reduced and still recreate an image we can
consider what happens when we reduce the frequency range of the Hadamard patterns used. The
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frequency spectrum can be determined by the number of changes in the pattern, how many times
the image changes between —1 and +1 (for the Hadamard patterns this value is the same for all
the rows and for all the columns in a single pattern). Figure 5 shows this measurement in the x
and y directions, enabling a frequency spectrum to be produced with the signal measured for
each pattern. The Hadamard spectrum shows the zero-frequency component in the top left and
the maximum frequency in the lower right. The plot demonstrates that with orthogonal patterns
the number of patterns used to capture the image can be reduced and will change the resulting
image quality. The difference between the ground truth and the produced image can be measured
using the mean squared error (MSE) as the difference between the ground truth intensity image
IgT and the reconstructed image /, defined as

—

m—1 n—

1

=0 J

(Uer(i, ) — 1(i, ))* . )

Il
(=}

From this the Power signal-to-noise ratio (PSNR) in decibel (dB) is defined as

MAX;,
PSNR =10-1 _— 6
210 | “3/5E (6)
[Patterns Hadamard Reconstructed Fourier Reconstructed \
used Spectrum Image Spectrum Image
Ground Ground
o)
100% truth truth
PSNR =
0
25% 65.9 dB
PSNR =
o)
5% 53.0 dB
PSNR =
o)
1% 42.8 dB

-

J

Fig. 5. The sampling frequencies for the Hadamard and Fourier sampling methods [67],
based on a 128 x 128 image. Reducing the number of patterns used to reconstruct the image
produces a lower quality image, as shown by the PSNR values for each image.

These calculations are performed for the different numbers of patterns used, with a comparison
of the Hadamard and Fourier basis shown in Fig. 5. A square cut-off is used to reduce the number
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of Hadamard patterns to reconstruct the image. The relation being that a significant reduction of
the patterns can be made, which effectively reduces the number of pixels in the image.

5.3. Fourier basis

Other sampling schemes have been based on Fourier encoding of the pattern set [31] with
further work showing some advantages over the Hadamard sampling method [67]. Whereas
the Hadamard patterns use arrays of binary values, the Fourier patterns use gray-scale values.
These gray-scale values can be produced with a DMD by dithering the mirrors during acquisition,
or by using a high-resolution DMD and having a “super-pixel” of several mirrors, where the
light gradient is controlled by the ratio of the mirrors in the “on” and “off”” states. The same
frequency is displayed with different phase values, with methods varying from using 3 or 4 phase
values equally spaced between 0 and 2x. For a square image consisting of N pixels the patterns
are created for the spatial frequencies 0 to (VN — 1) in both the x and y dimensions, with the
frequencies u and v respectively. The pattern P(u, v) is generated for the image as

P(u,v) = cos (27r (% + \;—%) + ¢) (7N

An example of these patterns is shown in Fig. 4. The intensity signal is insufficient to make an
image reconstruction, a measurement to acquire the phase is performed by changing the phase
term, ¢, in Eq. (7). The Fourier spectrum component ¥ (u, v) for the spatial frequencies u and v
defined for four values of ¢ is

F(u,v) = (Dz — Do) = i(D3z/2 — Drj2) (8

where Dy is the intensity measurement for the signal for each of the patterns P. An inverse Fourier
transform applied to the Fourier spectrum will reconstruct the image. The Fourier spectrum
allows for a sensible filtering of the number of patterns needed to reconstruct the image. The
effect of reducing the number of sampling frequencies used to reconstruct an image is shown
in Fig. 5. It has been demonstrated that changing the shape of the cut-off, from a square to a
circle or diamond, can produce different fidelity in the image reconstruction while using the same
number of patterns [67].

6. 3D imaging and ranging

Three-dimensional (3D) imaging and ranging is a research field that supports a wide range of
applications including object detection and classification, surface mapping and 3D situation
awareness for autonomous vehicles. Within the field of computational GI, two main techniques
are used, each having their advantages and drawbacks which are dependent on the specific
application.

6.1. 3D computational ghost imaging

A common technique of capturing 3D images uses stereo vision [68], which is the extraction of
3D information from the images of a scene obtained from different vantage points. However,
these different images need to be aligned and have the correct geometry for the technique to
be successful, and is usually computationally costly. There is a wide range of articles on using
multiple 2D images to estimate depth, and a review of the algorithms used can be found in
Lazaros et al. [69]. An alternative technique using photometric stereo [70] captures a sequence
of images, all from the same vantage point but under different lighting conditions. Each image in
the sequence is lit using a different spatially separated source of illumination. These images are
much easier to align provided the sequence is captured fast enough to avoid movement of the
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scene between image frames. The resulting images each differ mainly in the shading profile of
the scene, from which the surface normals can be estimated.

Depth information can also be estimated from the 2D images obtained from single-pixel or
computational GI. A good example of this is the 3D computational imaging system demonstrated
by Sun et al. [30], which uses a photometric stereo technique and multiple single-pixel detectors
rather than multiple illumination sources. Multiple detectors in different positions are used to
capture multiple images of a scene illuminated using a sequence of structured patterns. Similar
to conventional photometric stereo imaging, the shading in each individual image appears as if it
was illuminated from a different direction. Since the spatial structure of the images is determined
by a single pattern projector, the images exhibit perfect pixel registration, and comparing these
images allows the 3D form of the scene to be reconstructed.

6.2. Time-of-flight imaging

A time-of-flight (ToF) measurement determines the distance to an object by illuminating it with
pulsed laser light and measuring the delay of the back-scattered pulses [71,72]. The distance d
can be estimated by d = Afc/2, where At is the ToF and c is the speed of light. ToF can be used
in a single-pixel imaging configuration to provide information on the depth of the scene while
the transverse spatial resolution is provided by the single-pixel image reconstruction, allowing a
3D representation [54,73,74]. Pulsed lasers are available with a temporal resolution in the tens
of picoseconds and suitable detectors can be sensitive at the single photon level. Therefore, a
ToF method is compatible with long-range, high-precision depth mapping. Figure 3 illustrates a
structured illumination computational GI system that also incorporates a pulsed laser illumination
source for ToF measurements (similar to that described in Ref. [33]). It is important to realise
that these ToF measurement schemes are also compatible with single-pixel camera configurations,
such as the one illustrated in Fig. 2 and the experiments reported by Howland et al. [20,21].

In the case of regular 2D computational imaging, one average intensity measurement is
recorded for each mask or projected pattern in the sequence. In the 3D scheme, a series of
intensity measurements are recorded for each pattern, each element corresponding to an intensity
measurement at different depths within the scene. Hence, a series of images can be reconstructed,
one at each depth, forming a 3D data cube from which both the reflectivity and depth information
can be extracted.

Some of the previous demonstrations of ToF single-pixel imaging (or single-pixel LiDAR)
were based on photon counting (Geiger mode) detection [20,21]. However, despite the benefits of
being able to image in low light conditions, photon counting detectors have the disadvantage of
having an inherent dead time (typically 10s of nanoseconds) between successive measurements,
reducing the total detection efficiency. This requires measurements of the back-scattered photons
from many illumination pulses in order to obtain an accurate temporal response from a 3D
scene. Alternatively, a high-speed photodiode can measure the temporal response from a single
illumination pulse. Sun et al. [75] demonstrated a single-pixel 3D imaging system using a
high-speed photodiode for measuring the time-varying response of the back-scattered light,
achieving a depth accuracy of 3 mm at a detection range of 5 m.

7. Regularisation techniques

Real images are not collections of random pixel values, rather spatially adjacent pixels tend
to have similar values to each other. Within traditional image processing this allows various
denoising algorithms to be applied. Within single-pixel imaging denoising is also possible
but the same principles allow a form of compressed sensing where the number of masks and
associated measurements can be reduced to be smaller than the number of pixels in the image.
Both denoising and compressed sensing can be based on a cost function for the reconstructed
image which is derived from both the data and prior information, the image is then optimised
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to minimise the value of this cost function. The prior information can take several forms of
varying significance. At its most basic the prior can, without loss of generality, assume that all
pixel values are of positive intensity. Additionally, most natural scenes when expressed in the
spatial frequency domain are sparse, i.e. many of the spatial frequencies have extremely low
amplitude and can be discarded. This sparsity is the basis of many image compression techniques
including the ubiquitous JPEG [37], where a discrete cosine transform is used based on a fixed
low-dimensionality. To avoid the need to repeatedly calculate Fourier, or similar, transforms a
similar prior is to recognise that either total variation (TV) or total curvature (TC) of the intensity
distribution, Oy, of a natural image is small. These regularisation functions, R, can be written

as
N\ (1dI(0)| |dI(0)
o 5[40, ]
v ; dx dy
N 27. 27.
RTc(0)=Z(d;;(20 )|+ d;’y(f )‘) (10)

i=1
where as before N is the total number of pixels.

This image regularisation can be considered alongside a measure of how well the reconstructed
image accounts for the measured M data values. For Gaussian noise this is characterised by the
average of the square of the difference between the measured and predicted signals, y?/M, to
create a cost function, C, for the image reconstruction.

2
C-= %(0)+AR(0) (11)

The quantity A sets the balance of the reconstruction between satisfying the data or the prior
(captured in the regularisation function) and is typically set at a level such that, when optimised,
we have y?/M ~ 1, ensuring that the reconstruction is the one which most satisfies the prior
while still being statistically compatible with the data. As introduced above, if an image is
reconstructed using the approach embodied in Eq. (1), the algorithm can be applied to cases
for both M>N (number of measurements exceed number of pixels) or even M <N (number of
measurements less than number of pixels). When M>N the regularisation process is an example
of denoising, when M <N it is an implementation of compressed sensing [76].

The literature around compressed sensing is extensive, not just for single-pixel cameras but
more widely to high-dimensional measurement systems in general. Having established a cost
function upon which to optimise the reconstruction there are further subtleties as to the statistical
properties of the various regularisation functions. Assuming that the regularisation term is based
on the sum of many terms, e.g. the coefficients of the image spatial frequencies, one can combine
these coefficients into a single number, R, in various ways. Most obvious is to calculate the sum
of the squares, /5, of the individual coeflicients, and a minimisation of this term will tend to
suppress the large coefficients. However, real images of natural scenes often have a few dominant
spatial frequencies and a better goal is to promote a sparsity in the spatial frequencies. To this
end a more powerful regularisation is to calculate the sum of the moduli of the coefficients, /|
[2,4]. The details behind this sophistication is beyond the scope of this article but it is worth
flagging how different statistical measures yield reconstructed or denoised images with different
characteristics. There is no universal optimum measure, but rather the regularisation term should
be chosen that best reflects the image type. If an /; regularisation is to be used then it is essential
to undertake this regularisation in a basis in which the typical image can be described by the
smallest number of non zero coefficients (i.e. a basis in which the typical images are sparse) -
which for natural scenes is often the wavelet basis.
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8. Machine learning

The machine learning approach to single-pixel imaging is a newer development than many of
the other single-pixel associated techniques. The approach uses deep learning in the form of a
convolutional neural network (CNN) to perform the reconstruction of an image based on fewer
measurements than would be required for the orthogonal sampling methods or the traditional ghost
imaging techniques. The CNN exploits the development in the speed of calculations performed
by graphics processor units (GPUs) to allow higher computation rates than are available on
conventional computer processors. These CNNs have so far brought about breakthroughs in
processing images, object identification, language processing and medical diagnosis [77,78].

An application of CNNs developed by many groups has been to make reconstructions of
an image from random patterns [79—-81]. This computational GI using a CNN has produced
equivalent results to a regulariser method (as discussed in section 7). Sampling with random
patterns is much less efficient than with a structured imaging basis. However, deep learning has
allowed the sampling basis itself to be constructed to be most efficient to sample a scene. If we
are able to construct the most efficient basis then efficient imaging can be made with a minimal
number of measurements. This development of a sampling basis was shown by Higham et al.
[23], for a 128 x 128 image the number of samples was made to be 666 demonstrating a 4%
compression in the sampling to reconstruct 2D images at video rates. The training of the CNN
produces the sampling basis (pattern set) and also the reconstruction algorithm in the form of a
trained neural network, results are shown in Fig. 6. This development of a custom basis was later
used to produce 3D images of a scene [33], where the deep-learned patterns were projected onto
a scene and the depth image was recovered. Similar to the scheme described in section 6.2 and
illustrated in Fig. 3, a pulsed laser illuminated a DMD which was used to structure the light and
(using photon-counting timing electronics) a time-of-flight measurement was made to collect the
depth map of the scene.

Deep learned -
single-pixel
imaging patterns

Fig. 6. An example of single-pixel imaging using deep-learning. a) The reconstruction from
Hadamard sampling using a reduced number of patterns (4%). b) The reconstruction using a
trained neural-network using a deep-learned patterns set. ¢) Examples of the deep-learned
pattern sampling basis. The method applied has been presented in Higham et al. [23].

Single-pixel imaging does not necessarily need to perform a full image reconstruction to detect
and classify objects. A CNN has been used to develop a low number of patterns to classify
and identify very fast moving objects [82]. This technique could be extended further to enable
a sensing system that feeds into a control system, such as an autonomous vehicle, meaning
the creation of an image to analyse is not required for the navigation algorithms to react to a
hazard presented to it, enabling much faster reaction times. Such sensing schemes are sometimes
referred to as image-free classification.
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Finally, using optical machine learning with a single-pixel detector may also be a possibility
for image reconstruction. A diffractive neural network made up of a cascade of phase-only masks
can reconstruct images without requiring the processing power of a computer [83].

9. Conclusions

We have provided a review of both single-pixel imaging and computational GI techniques and
given a summary timeline of some of the main developments over the past twelve years. We have
discussed some of the important aspects of the technique including, the modulation hardware,
choice of pattern design, sampling strategy and the choice of detector types. While it is clear
that single-pixel cameras and computational GI systems are similar in an optical sense, for the
purposes of this review we found it convenient to maintain the distinction between the two. In
this respect we recognise that single-pixel cameras are often based on structured detection and
compressed sensing while computational GI is often based on structured illumination.

We have discussed two major advantages of single-pixel imaging which both relate to the
choice of the single-pixel detector type. The first is in the design of low-cost cameras for imaging
at wavelengths or multiple wavelengths outside the visible spectrum, where focal plane detector
arrays are unavailable or prohibitively expensive. The second is time-resolved imaging where
the time resolution of the single-pixel detector is vastly superior to that of the focal-plane array.
Potential applications could be in the design of low-cost cameras for imaging at IR wavelengths,
such as in gas leak detection, and for 3D imaging and ranging using LiDAR systems.

From very early on in the development of single-pixel imaging and computational GI there has
been much research into ways to reduce both the data acquisition time and the image reconstruction
time. Some of these techniques have been discussed in this review and include, orthogonal
sampling pattern basis, compressive sensing, high-speed spatial light modulation and machine
learning algorithms. Machine learning techniques have shown promise in LiIDAR systems for the
high-speed 3D information and ranging required for situation awareness of autonomous vehicles.
It is important to realise that in such detection and classification applications it is often sufficient
to detect the characteristic intensity signals without needing to reconstruct the image. Hence, fast
“image-free” detection and classification is a promising research field of single-pixel imaging
which could lead to an exciting new range of unique sensing technologies.
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