215 research outputs found

    Combined Biologic Augmentation Strategies with Collagen Patch Graft, Microfractures, and Platelet Concentrate Injections Improve Functional and Structural Outcomes of Arthroscopic Revision Rotator Cuff Repair

    Get PDF
    Background: Arthroscopic revision rotator cuff repair (ARRCR) is challenging. Biologic strategies seem to be promising. The aim was to evaluate the effectiveness of the combination of microfractures of the greater tuberosity, augmentation with collagen patch graft, and platelet concentrate injections in ARRCR. Methods: A retrospective comparative study was conducted on patients that underwent ARRCR with a minimum follow-up of two years. Patients in the augmentation group underwent ARRCR combined with microfractures, collagen patch graft, and postoperative subacromial injections of platelet concentrate. A standard rotator cuff repair was performed in the control group. Primary outcome: Constant-Murley score (CMS). Secondary outcomes: disease-specific, health-related quality of life using the Disabilities of the Arm, Shoulder, and Hand (DASH) score; assessment of tendon integrity with magnetic resonance at least six months after surgery. Significance was set at p < 0.05. Results: Forty patients were included. Mean follow-up was 36.2 ± 8.7 months. The mean CMS was greater in the augmentation group (p = 0.022). No differences could be found for DASH score. Healing failure rate was higher in the control group (p = 0.002). Conclusion: Biologic augmentation of ARRCR using a combination of microfractures, collagen patch graft, and subacromial injections of platelet concentrate is an effective strategy in improving tendon healing rate. Level of evidence: retrospective cohort study, level III

    The low-frequency response in the surface superconducting state of ZrB12_{12} single crystal}

    Full text link
    The large nonlinear response of a single crystal ZrB12_{12} to an ac field (frequency 40 - 2500 Hz) for H0>Hc2H_0>H_{c2} has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as phenomenological relaxation equation, permit the study of the surface superconducting states dynamics. It is shown, that the low frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate which determines such transitions dynamics, is found.Comment: 7 pages, 11 figure

    On Electron Transport in ZrB12, ZrB2 and MgB2

    Full text link
    We report on measurements of the temperature dependence of resistivity, ρ(T)\rho(T), for single crystal samples of ZrB12_{12}, ZrB2_{2} and polycrystalline samples of MgB2_{2}. It is shown that cluster compound ZrB12_{12} behaves like a simple metal in the normal state, with a typical Bloch -- Gr\"uneisen ρ(T)\rho(T) dependence. However, the resistive Debye temperature, TR=300KT_{R}=300 K, is three times smaller than TDT_{D} obtained from specific heat data. We observe the T2T^{2} term in ρ(T)\rho(T) of these borides, which could be interpreted as an indication of strong electron-electron interaction. Although the ρ(T)\rho (T) dependence of ZrB12_{12} reveals a sharp superconductive transition at Tc=6.0KT_{c}=6.0 K, no superconductivity was observed for single crystal samples of ZrB2_{2} down to 1.3K1.3 K.Comment: 5 pages, 4 figure

    Yb-Yb correlations and crystal-field effects in the Kondo insulator YbB12 and its solid solutions

    Full text link
    We have studied the effect of Lu substitution on the spin dynamics of the Kondo insulator YbB12 to clarify the origin of the spin-gap response previously observed at low temperature in this material. Inelastic neutron spectra have been measured in Yb1-xLuxB12 compounds for four Lu concentrations x = 0, 0.25, 0.90 and 1.0. The data indicate that the disruption of coherence on the Yb sublattice primarily affects the narrow peak structure occurring near 15-20 meV in pure YbB12, whereas the spin gap and the broad magnetic signal around 38 meV remain almost unaffected. It is inferred that the latter features reflect mainly local, single-site processes, and may be reminiscent of the inelastic magnetic response reported for mixed-valence intermetallic compounds. On the other hand, the lower component at 15 meV is most likely due to dynamic short-range magnetic correlations. The crystal-field splitting in YbB12 estimated from the Er3+ transitions measured in a Yb0.9Er0.1B12 sample, has the same order of magnitude as other relevant energy scales of the system and is thus likely to play a role in the form of the magnetic spectral response.Comment: 16 pages in pdf format, 9 figures. v. 2: coauthor list updated; extra details given in section 3.2 (pp. 6-7); one reference added; fig. 5 axis label change

    Salvage carbon dioxide transoral laser microsurgery for laryngeal cancer after (chemo)radiotherapy: a European Laryngological Society consensus statement

    Get PDF
    Purpose: To provide expert opinion and consensus on salvage carbon dioxide transoral laser microsurgery (CO2 TOLMS) for recurrent laryngeal squamous cell carcinoma (LSCC) after (chemo)radiotherapy [(C)RT]. Methods: Expert members of the European Laryngological Society (ELS) Cancer and Dysplasia Committee were selected to create a dedicated panel on salvage CO2 TOLMS for LSCC. A series of statements regarding the critical aspects of decision-making were drafted, circulated, and modified or excluded in accordance with the Delphi process. Results: The expert panel reached full consensus on 19 statements through a total of three sequential evaluation rounds. These statements were focused on different aspects of salvage CO2 TOLMS, with particular attention on preoperative diagnostic work-up, treatment indications, postoperative management, complications, functional outcomes, and follow-up. Conclusion: Management of recurrent LSCC after (C)RT is challenging and is based on the need to find a balance between oncologic and functional outcomes. Salvage CO2 TOLMS is a minimally invasive approach that can be applied to selected patients with strict and careful indications. Herein, a series of statements based on an ELS expert consensus aimed at guiding the main aspects of CO2 TOLMS for LSCC in the salvage setting is presented

    The energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy

    Full text link
    We have investigated the intermediate valence narrow-gap semiconductor SmB6 at low temperatures using both conventional spear-anvil type point contacts as well as mechanically controllable break junctions. The zero-bias conductance varied between less than 0.01 mikrosiemens and up to 1 mS. The position of the spectral anomalies, which are related to the different activation energies and band gaps of SmB6, did not depend on the the contact size. Two different regimes of charge transport could be distinguished: Contacts with large zero - bias conductance are in the diffusive Maxwell regime. They had spectra with only small non-linearities. Contacts with small zero - bias conductance are in the tunnelling regime. They had larger anomalies, but still indicating a finite 45 % residual quasiparticle density of states at the Fermi level at low temperatures of T = 0.1 K. The density of states derived from the tunelling spectra can be decomposed into two energy-dependent parts with Eg = 21 meV and Ed = 4.5 meV wide gaps, respectively.Comment: 9 pages incl. 13 figure

    Is ZrB12 two gap superconductor?

    Full text link
    We report the measurements of the temperature dependence of the resistivity, \rho(T), magnetic penetration depth,\lambda(T) the lower, Hc1(T), and upper, Hc2(T), critical magnetic fields, for single crystals of dodecaboride ZrB12, diboride ZrB2 and thin films of diboride MgB2. We observe a number of deviations from conventional behavior in these materials. Although ZrB12 behaves like a simple metal in the normal state, the resistive Debye temperature, 300 K, is three times smaller relative to that (800-1200 K) calculated from the specific heat, C(T), data. We observe predominantly quadratic temperature behavior of resistivity in ZrB12 below 25 K, and in ZrB2 below 100 K, indicating the possible importance of the electron-electron interaction in these borides. Superfluid density of ZrB12 displays unconventional temperature dependence with pronounced shoulder at T/Tc equal to 0.65. Contrary to conventional theories we found a linear temperature dependence of Hc2(T) for ZrB12 from Tc down to 0.35 K. We suggest that both \lambda(T) and Hc2(T) dependencies in ZrB12 can be explained by two band BCS model with different superconducting gap and Tc.Comment: PDF file, 12 pages, 10 figures, submitted to Physical Review
    corecore