18 research outputs found

    Novel essential amino acid supplements enriched with L-leucine facilitate increased protein and energy intakes in older women: a randomised controlled trial

    Get PDF
    Background: Inadequate protein intake (PI), containing a sub-optimal source of essential amino acids (EAAs), and reduced appetite are contributing factors to age-related sarcopenia. The satiating effects of dietary protein per se may negatively affect energy intake (EI), thus there is a need to explore alternative strategies to facilitate PI without compromising appetite and subsequent EI. Methods: Older women completed two experiments (EXP1 and EXP2) where they consumed either a Bar (565 kJ), a Gel (477 kJ), both rich in EAAs (7.5 g, 40% L-leucine), or nothing (Control). In EXP1, participants (n=10, 68±5 years, mean±SD) consumed Bar, Gel or Control with appetite sensations and appetite-related hormonal responses monitored for one hour, followed by consumption of an ad libitum breakfast (ALB). In EXP2, participants (n=11, 69±5 years) ingested Bar, Gel or Control alongside an ALB. Results: In EXP1, EI at ALB was not different (P=0.674) between conditions (1179±566, 1254±511, 1206±550 kJ for the Control, Bar, and Gel respectively). However, total EI was significantly higher in the Bar and Gel compared to the Control after accounting for the energy content of the supplements (P<0.0005). Analysis revealed significantly higher appetite Area under the Curve (AUC) (P<0.007), a tendency for higher acylated ghrelin AUC (P=0.087), and significantly lower pancreatic polypeptide AUC (P=0.02) in the Control compared with the Bar and Gel. In EXP2, EI at ALB was significantly higher (P=0.028) in the Control (1282±513 kJ) compared to the Bar (1026±565 kJ) and Gel (1064±495 kJ). However, total EI was significantly higher in the Bar and Gel after accounting for the energy content of the supplements (P<0.007). Conclusions: Supplementation with either the Bar or Gel increased total energy intake whether consumed one hour before or during breakfast. This may represent an effective nutritional means for addressing protein and total energy deficiencies in older women

    COVID-19 vaccination, risk-compensatory behaviours, and contacts in the UK

    Get PDF
    The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects not well known. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially important because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation. Here, we show that behaviours were overall unrelated to personal vaccination, but—adjusting for variation in mitigation policies—were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously

    Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom

    Get PDF
    We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged &gt;60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a ‘low responder’ group that more commonly consisted of people aged &gt;75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged &gt;60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection

    Risk of SARS-CoV-2 reinfection during multiple Omicron variant waves in the UK general population

    Get PDF
    SARS-CoV-2 reinfections increased substantially after Omicron variants emerged. Large-scale community-based comparisons across multiple Omicron waves of reinfection characteristics, risk factors, and protection afforded by previous infection and vaccination, are limited. Here we studied ~45,000 reinfections from the UK’s national COVID-19 Infection Survey and quantified the risk of reinfection in multiple waves, including those driven by BA.1, BA.2, BA.4/5, and BQ.1/CH.1.1/XBB.1.5 variants. Reinfections were associated with lower viral load and lower percentages of self-reporting symptoms compared with first infections. Across multiple Omicron waves, estimated protection against reinfection was significantly higher in those previously infected with more recent than earlier variants, even at the same time from previous infection. Estimated protection against Omicron reinfections decreased over time from the most recent infection if this was the previous or penultimate variant (generally within the preceding year). Those 14–180 days after receiving their most recent vaccination had a lower risk of reinfection than those &gt;180 days from their most recent vaccination. Reinfection risk was independently higher in those aged 30–45 years, and with either low or high viral load in their most recent previous infection. Overall, the risk of Omicron reinfection is high, but with lower severity than first infections; both viral evolution and waning immunity are independently associated with reinfection

    SBOL Visual: A Graphical Language for Genetic Designs

    Get PDF
    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual

    Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines

    Get PDF
    Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2–3 months after two ChAdOx1 doses, for 5–8 months after two BNT162b2 doses in those without prior infection and for 1–2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable

    SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection

    Get PDF
    Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out in many settings, there is a need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity. We evaluate whether a single vaccination in individuals who have already been infected with SARS-CoV-2 generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single vaccination with ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults median (50 (IQR: 37–63) years) receiving at least one vaccination, 13,404 (13.3%) had serological/PCR evidence of prior infection. Prior infection significantly boosted antibody responses, producing higher peak levels and/or longer half-lives after one dose of all three vaccines than those without prior infection receiving one or two vaccinations. In those with prior infection, the median time above the positivity threshold was &gt;1 year after the first vaccination. Single-dose vaccination targeted to those previously infected may provide at least as good protection to two-dose vaccination among those without previous infection

    Protection against SARS-CoV-2 Omicron BA.4/5 variant following booster vaccination or breakthrough infection in the UK

    Get PDF
    Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy

    Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey

    Get PDF
    Background: Decisions about the continued need for control measures to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on accurate and up-to-date information about the number of people testing positive for SARS-CoV-2 and risk factors for testing positive. Existing surveillance systems are generally not based on population samples and are not longitudinal in design. Methods: Samples were collected from individuals aged 2 years and older living in private households in England that were randomly selected from address lists and previous Office for National Statistics surveys in repeated crosssectional household surveys with additional serial sampling and longitudinal follow-up. Participants completed a questionnaire and did nose and throat self-swabs. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time by use of dynamic multilevel regression and poststratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also assessed. The study is registered with the ISRCTN Registry, ISRCTN21086382. Findings: Between April 26 and Nov 1, 2020, results were available from 1 191 170 samples from 280327 individuals; 5231 samples were positive overall, from 3923 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between April 26 and June 28, 2020, from 0·40% (95% credible interval 0·29–0·54) to 0·06% (0·04–0·07), followed by low levels during July and August, 2020, before substantial increases at the end of August, 2020, with percentages testing positive above 1% from the end of October, 2020. Having a patient facing role and working outside your home were important risk factors for testing positive for SARS-CoV-2 at the end of the first wave (April 26 to June 28, 2020), but not in the second wave (from the end of August to Nov 1, 2020). Age (young adults, particularly those aged 17–24 years) was an important initial driver of increased positivity rates in the second wave. For example, the estimated percentage of individuals testing positive was more than six times higher in those aged 17–24 years than in those aged 70 years or older at the end of September, 2020. A substantial proportion of infections were in individuals not reporting symptoms around their positive test (45–68%, dependent on calendar time. Interpretation: Important risk factors for testing positive for SARS-CoV-2 varied substantially between the part of the first wave that was captured by the study (April to June, 2020) and the first part of the second wave of increased positivity rates (end of August to Nov 1, 2020), and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the COVID-19 pandemic moving forwards
    corecore