12 research outputs found

    The effect of mutual location of heaters on the falling film dynamics

    No full text

    The effect of gravity and shear stress on a liquid film driven in a horizontal minichannel at local heating

    No full text
    The present study is focused on the investigation of gravity effect on thermocapillary deformations in a film flowing under action of co-current gas flow, which creates the tangential force on the gas-liquid interface. The influence of local heating intensity on the heater at a substrate is also investigated. Effects of surface tension, temperature dependent viscosity and thermocapillarity are taken into account. Investigations have shown that gravity has a significant effect on the film deformations and pattern. Decreasing of gravity level leads to a flow destabilization. 3D liquid film pattern noticeably changes in spanwise direction. Increasing of heat flux leads to increasing of liquid film deformations. Dependence of film thinning on heat flux is strongly nonlinear. The most dangerous deformations (regions of minimum film thickness with possible disruption of liquid) take place behind the downstream edge of the heater at any gravity conditions.En ligne: http://www.springerlink.com/content/j207456083166646/info:eu-repo/semantics/publishe

    Solar Orbiter: Mission and spacecraft design

    No full text
    The main scientific goal of Solar Orbiter is to address the central question of heliophysics: ‘how does the Sun create and control the heliosphere?’ To achieve this goal, the spacecraft carries a unique combination of ten scientific instruments (six remote-sensing instruments and four in-situ instruments) towards the innermost regions of the Solar System, to as close as 0.28 AU from the Sun during segments of its orbit. The orbital inclination will be progressively increased so that the spacecraft reaches higher solar latitudes (up to 34° towards the end of the mission), making detailed studies of the polar regions of the Sun possible for the first time. This paper presents the spacecraft and its intended trip around the Sun. We also discuss the main engineering challenges that had to be addressed during the development cycle, instrument integration, and testing of the spacecraft

    Coordination within the remote sensing payload on the Solar Orbiter mission

    No full text
    Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements. Aims. Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together. Methods. A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis. Results. The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner

    The Solar Orbiter SPICE instrument: An extreme UV imaging spectrometer

    No full text
    Aims. The Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. Methods. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument’s signal. Results. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument’s design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument’s performance. The paper concludes with descriptions of the operations concept and data processing. Conclusions. The performance measurements of the various instrument parameters meet the requirements derived from the mission’s science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission

    The Solar Orbiter SPICE instrument -- An extreme UV imaging spectrometer

    No full text
    A&A, accepted 19 August 2019; 26 pages, 25 figuresThe Spectral Imaging of the Coronal Environment (SPICE) instrument is a high-resolution imaging spectrometer operating at extreme ultraviolet (EUV) wavelengths. In this paper, we present the concept, design, and pre-launch performance of this facility instrument on the ESA/NASA Solar Orbiter mission. The goal of this paper is to give prospective users a better understanding of the possible types of observations, the data acquisition, and the sources that contribute to the instrument's signal. The paper discusses the science objectives, with a focus on the SPICE-specific aspects, before presenting the instrument's design, including optical, mechanical, thermal, and electronics aspects. This is followed by a characterisation and calibration of the instrument's performance. The paper concludes with descriptions of the operations concept and data processing. The performance measurements of the various instrument parameters meet the requirements derived from the mission's science objectives. The SPICE instrument is ready to perform measurements that will provide vital contributions to the scientific success of the Solar Orbiter mission
    corecore