102 research outputs found

    Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency)

    Full text link
    X-linked lymphoproliferative syndromes (XLP) are primary immunodeficiencies characterized by a particular vulnerability toward Epstein-Barr virus infection, frequently resulting in hemophagocytic lymphohistiocytosis (HLH). XLP type 1 (XLP-1) is caused by mutations in the gene SH2D1A (also named SAP), whereas mutations in the gene XIAP underlie XLP type 2 (XLP-2). Here, a comparison of the clinical phenotypes associated with XLP-1 and XLP-2 was performed in cohorts of 33 and 30 patients, respectively. HLH (XLP-1, 55%; XLP-2, 76%) and hypogammaglobulinemia (XLP-1, 67%; XLP-2, 33%) occurred in both groups. Epstein-Barr virus infection in XLP-1 and XLP-2 was the common trigger of HLH (XLP-1, 92%; XLP-2, 83%). Survival rates and mean ages at the first HLH episode did not differ for both groups, but HLH was more severe with lethal outcome in XLP-1 (XLP-1, 61%; XLP-2, 23%). Although only XLP-1 patients developed lymphomas (30%), XLP-2 patients (17%) had chronic hemorrhagic colitis as documented by histopathology. Recurrent splenomegaly often associated with cytopenia and fever was preferentially observed in XLP-2 (XLP-1, 7%; XLP-2, 87%) and probably represents minimal forms of HLH as documented by histopathology. This first phenotypic comparison of XLP subtypes should help to improve the diagnosis and the care of patients with XLP conditions

    The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control

    Full text link
    Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia

    Case report: ETS1 gene deletion associated with a low number of recent thymic emigrants in three patients with Jacobsen syndrome

    Full text link
    Jacobsen syndrome is a rare genetic disorder associated with a terminal deletion in chromosome 11. The clinical presentation is variable. Although immunodeficiency has been described in patients with Jacobsen syndrome, a clear genotype-phenotype correlation has not yet been established. Here, we report on the immunologic phenotypes of four patients with Jacobsen syndrome. All four patients showed one or more atypical immunologic features. One patient suffered from recurrent viral infections, two patients had experienced a severe bacterial infection and one had received antibiotic prophylaxis since early childhood. One patient had experienced severe, transient immune dysregulation. Hypogammaglobulinemia and low B cell counts were found in two patients, while the number of recent thymic emigrants (CD31+CD45RA+ CD4 cells) was abnormally low in three. When considering the six immune-related genes located within the affected part of chromosome 11 (ETS1, TIRAP, FLI1, NFRKB, THYN1, and SNX19), only the ETS1 gene was found be deleted in the three patients with low numbers of recent thymic emigrants and non-switched memory B cells. Our findings support the hypothesis whereby Jacobsen syndrome is associated with a combined immunodeficiency with variable presentation. Further investigations of potential genotype-phenotype correlations are warranted and might help to personalize patient management in individuals lacking immune-related genes. In addition, we recommend immunologic follow-up for all patients with Jacobsen syndrome, as immune abnormalities may develop over time. Keywords: ETS1; Jacobsen syndrome; genetic disorder; immunodeficiency; recent thymic emigrants

    Life-Threatening Primary Varicella Zoster Virus Infection With Hemophagocytic Lymphohistiocytosis-Like Disease in GATA2 Haploinsufficiency Accompanied by Expansion of Double Negative T-Lymphocytes

    Get PDF
    Two unrelated patients with GATA2-haploinsufficiency developed a hemophagocytic lymphohistiocytosis (HLH)-like disease during a varicella zoster virus (VZV) infection. High copy numbers of VZV were detected in the blood, and the patients were successfully treated with acyclovir and intravenous immunoglobulins. After treatment with corticosteroids for the HLH, both patients made a full recovery. Although the mechanisms leading to this disease constellation have yet to be characterized, we hypothesize that impairment of the immunoregulatory role of NK cells in GATA2-haploinsufficiency may have accentuated the patients' susceptibility to HLH. Expansion of a double negative T-lymphocytic population identified with CyTOF could be a further factor contributing to HLH in these patients. This is the first report of VZV-triggered HLH-like disease in a primary immunodeficiency and the third report of HLH in GATA2-haploinsufficiency. Since HLH was part of the presentation in one of our patients, GATA2-haploinsufficiency represents a potential differential diagnosis in patients presenting with the clinical features of HLH—especially in cases of persisting cytopenia after recovery from HLH

    Premature birth, respiratory distress, intracerebral hemorrhage, and silvery-gray hair: differential diagnosis of the 3 types of Griscelli syndrome

    Full text link
    A preterm neonate, born to consanguineous parents, presented with respiratory distress, intracerebral hemorrhage, and a silvery-gray sheen of the hair and eyelashes. Griscelli syndrome (GS) type 3 was diagnosed after the detection of a novel homozygous mutation of the melanophilin gene. Thus, only the hypopigmentation, but not the patient's other clinical features, were attributable to this form of GS. Differential diagnosis of the various forms of GS must be performed as early as possible as GS2 is associated with a life threatening but curable immune disorder

    Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects

    Get PDF
    Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAsThe work was supported by the Swiss National Science Foundation (31003A_179256/1 to UFG, and 320030_205097 to JPS), the Swiss National Science Foundation SystemsX RTD InfectX (51RT 0_126008 to UFG and CvM), and the University Research Priority Program of the University of Zurich (URPP) ITINERARE – Innovative Therapies in Rare Diseases to JPS.Peer reviewe

    Expert consensus on dynamics of laboratory tests for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis

    Get PDF
    Objective: To identify which laboratory tests that change over time are most valuable for the timely diagnosis of macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (sJIA). Methods: A multistep process, based on a combination of expert consensus and analysis of real patient data, was conducted. A panel of experts was first asked to evaluate 115 profiles of patients with MAS, which included the values of laboratory tests at the pre-MAS visit and at MAS onset, and the change in values between the two time points. The experts were asked to choose the 5 laboratory tests in which change was most important for the diagnosis of MAS and to rank the 5 selected tests in order of importance. The relevance of change in laboratory parameters was further discussed and ranked by the same experts at a consensus conference. Results: Platelet count was the most frequently selected test, followed by ferritin level, aspartate aminotransferase (AST), white cell count, neutrophil count, and fibrinogen and erythrocyte sedimentation rate. Ferritin was most frequently assigned the highest score. At the end of the process, platelet count, ferritin level and AST were the laboratory tests in which the experts found change over time to be most important. Conclusions: We identified the laboratory tests in which change over time is most valuable for the early diagnosis of MAS in sJIA. The dynamics of laboratory values during the course of MAS should be further scrutinised in a prospective study in order to establish the optimal cut-off values for their variation

    2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative

    Get PDF
    Objective To develop criteria for the classification of macrophage activation syndrome (MAS) in patients with systemic juvenile idiopathic arthritis (JIA). Methods A multistep process, based on a combination of expert consensus and analysis of real patient data, was conducted. A panel of 28 experts was first asked to classify 428 patient profiles as having or not having MAS, based on clinical and laboratory features at the time of disease onset. The 428 profiles comprised 161 patients with systemic JIA-associated MAS and 267 patients with a condition that could potentially be confused with MAS (active systemic JIA without evidence of MAS, or systemic infection). Next, the ability of candidate criteria to classify individual patients as having MAS or not having MAS was assessed by evaluating the agreement between the classification yielded using the criteria and the consensus classification of the experts. The final criteria were selected in a consensus conference. Results Experts achieved consensus on the classification of 391 of the 428 patient profiles (91.4%). A total of 982 candidate criteria were tested statistically. The 37 best-performing criteria and 8 criteria obtained from the literature were evaluated at the consensus conference. During the conference, 82% consensus among experts was reached on the final MAS classification criteria. In validation analyses, these criteria had a sensitivity of 0.73 and a specificity of 0.99. Agreement between the classification (MAS or not MAS) obtained using the criteria and the original diagnosis made by the treating physician was high (Îş = 0.76). Conclusion We have developed a set of classification criteria for MAS complicating systemic JIA and provided preliminary evidence of its validity. Use of these criteria will potentially improve understanding of MAS in systemic JIA and enhance efforts to discover effective therapies, by ensuring appropriate patient enrollment in studies

    Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia

    Full text link
    X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4–dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8–207.8, P < 0.001). The patients’ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia
    • …
    corecore