23 research outputs found

    Inflammatory factors and blood platelets in experimental myocardial ischemic injury

    Get PDF
    Die erfolgreiche therapeutische Beeinflussung pathophysiologischer Prozesse im Herzen nach myokardialem Infarkt stellt nicht zuletzt durch die steigenden Fallzahlen in der westlichen Welt und die vergleichsweise hohe MortalitĂ€t eine Herausforderung an Forschung und Entwicklung dar. In der vorliegenden Arbeit werden verschiedene therapeutische Strategien in klinisch relevanten Mausmodellen des Myokardinfarkts und des IschĂ€mie-Reperfusions-Schadens getestet. ZunĂ€chst wird untersucht, ob sich der Einsatz des NFÎșB-aktivierenden Zytokins TWEAK, welches weitreichende Funktionen in physiologischen Prozessen wie Wundheilung und EntzĂŒndung besitzt, als eine mögliche Therapiestrategie eignet. Die Expression von TWEAK wird nach myokardialem Infarkt stark im Herzgewebe induziert. Das gleiche gilt fĂŒr den Rezeptor von TWEAK, Fn14, der vor allem auf kardialen Fibroblasten exprimiert wird. Daher wird angenommen, dass das TWEAK-Fn14-System am kardialen Remodelling und der Wundheilung im infarzierten Herzen beteiligt sein kann. Eine rekombinante Variante von TWEAK - HSA-Flag-TWEAK - wird im Mausmodell des Myokardinfarkts getestet. Überraschenderweise zeigt sich hierbei, dass die therapeutische Behandlung von infarzierten Versuchstieren mit diesem Protein die MortalitĂ€t im Vergleich zu Placebo-behandelten MĂ€usen signifikant erhöht. Dies geht mit einem vermehrten Auftreten an linksventrikulĂ€ren Rupturen einher, ohne dass Defekte im kardialen Remodelling oder eine erhöhte Apoptoserate im Herzen festgestellt werden können. HSA-Flag-TWEAK bewirkt eine Erhöhung der Gewebekonzentrationen an verschiedenen pro-inflammatorischen Zytokinen (IFN-Îł, IL-5, IL-12, GITR, MCP-1/-5 und RANTES) und das vermehrte Einwandern von Immunzellen in das Myokard. Hierbei ist insbesondere die stark erhöhte Infiltration an neutrophilen Granulozyten auffĂ€llig. Ein kausaler Zusammenhang zwischen diesen Immunzellen und den auftretenden kardialen Rupturen kann durch die Depletion der Neutrophilen gezeigt werden: Nach der systemischen Applikation eines Ly6G-depletierenden Antikörpers ist das Auftreten von kardialen Rupturen nach TWEAK-Gabe vergleichbar mit der Placebo-behandelten Infarktgruppe. Die Tatsache, dass die MortalitĂ€t dennoch erhöht ist, deutet auf weitere negative Effekte durch TWEAK hin. Diese Ergebnisse legen die Vermutung nahe, dass eine Hemmung der TWEAK-Fn14-Achse positive Effekte auf die Wundheilung nach Herzinfarkt bewirken könnte. Als zweite Therapiestrategie wird die pharmakologische Beeinflussung verschiedener BlutplĂ€ttchen-spezifischer Zielstrukturen untersucht, um das Auftreten von Mikrothromben nach Myokardinfarkt zu reduzieren. Eine Hemmung ĂŒber das BlutplĂ€ttchen-Glykoprotein GPVI bewirkt in dem hier eingesetzten Mausmodell der kardialen IschĂ€mie-Reperfusion eine signifikant verbesserte Mikrozirkulation sowie verringerte InfarktgrĂ¶ĂŸen. GPVI stellt somit ein vielversprechendes Ziel fĂŒr eine blutplĂ€ttchenhemmende Therapie nach Myokardinfarkt dar. Zusammengefasst werden in der vorliegenden Arbeit verschiedene neuartige Therapieoptionen untersucht, die die Auswirkungen ischĂ€mischer Erkrankungen des Herzens beeinflussen können. Die Ergebnisse besitzen daher das Potenzial, zur Entwicklung neuer Therapien nach Myokardinfarkt beizutragen.The successful therapeutic targeting of pathophysiological processes in the heart is of importance for the treatment of patients suffering from myocardial infarction. Due to the combination of the rising incidence of this diesease in Western countries with its comparably high mortality, novel therapies need to be developed. In the work presented here, several innovative concepts are tested in clinically relevant mouse models of myocardial infarction and ischemia-reperfusion injury. First, the feasibility of using the NFÎșB-activating cytokine TWEAK as a novel drug in the treatment of myocardial infarction is assessed. TWEAK is involved in wound healing and inflammation and might therefore play a pivotal role in cardiac remodelling and the outcome after myocardial infarction. The expression of this cytokine within the infarcted heart is significantly up-regulated as is the expression of the TWEAK receptor Fn14, which is mainly expressed on cardiac fibroblasts. A recombinant variant of this cytokine - HSA-Flag-TWEAK - is used to treat infarcted mice in order to assess whether exogeneous TWEAK modulates the pathologic events following ischemic cardiac injury. Surprisingly, the treatment of infarcted test animals with HSA-Flag-TWEAK results in significantly increased mortality compared to placebo-treated mice. This is accompanied with an increased incidence in left ventricular cardiac ruptures without apparent defects in cardiac remodelling or increased rates of cardiac apoptosis. Treatment with HSA-Flag-TWEAK increases tissue levels of several pro-inflammatory cytokines (IFN-Îł, IL-5, IL-12, GITR, MCP-1/-5 and RANTES) and elevates the numbers of immune cells within the myocardium. In particular, the infiltration of neutrophilic granulocytes is markedly increased. Employing Ly6G-depleting antibodies in vivo proves neutrophils to be a causal factor in the occurrence of cardiac ruptures following HSA-Flag-TWEAK treatment. Depletion of these cells results in a reduction of cardiac rupture incidences to baseline values. Nevertheless, mice treated with HSA-Flag-TWEAK still show increased mortalities, irrespective of being proficient or deficient for neutrophils. This implies further negative mechanisms induced by the activation of the TWEAK-Fn14 axis in this experimental setting and might pave the way for the development of therapies neutralizing or blocking TWEAK as a novel means to improve the outcome after myocardial infarction. As a second therapeutic strategy, several platelet-specific proteins are targeted in a mouse model of myocardial ischemia-reperfusion injury to reduce the incidence of microthrombi after myocardial infarction. Inhibiting the platelet glycoprotein GPVI results in significantly improved microcirculation and decreased infarct sizes. Platelet inhibition by targeting GPVI might therefore be a promising novel therapeutic strategy after myocardial infarction. In summary, a number of innovative therapeutic strategies targeting different molecular structures are tested here and the results of this study may contribute to the development of novel therapies after myocardial infarction

    Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1

    Get PDF
    Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome

    5-Lipoxygenase facilitates healing after myocardial infarction

    Get PDF
    Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX−/−^{−/−} when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX−/−^{−/−} bone marrow in 5-LOX−/−^{−/−} animals), indicating that an altered function of 5-LOX−/−^{−/−} inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX−/−^{−/−} mice in vivo after MI. This might be due to an impaired migration of 5-LOX−/−^{−/−} fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function

    HSA-Flag-TWEAK fails to modulate extracellular matrix remodeling after MI.

    No full text
    <p>mRNA-expression of (A) collagen1α1, collagen1α2, (B) MMP-2, MMP-3, MMP-8, and MMP-9 were unaffected in the scar region of HSA-Flag-TWEAK challenged mice as were the (C) zymographic activities of MMP-2 and MMP-9 (measured as gel band intensity) and (D) TIMP-2, TIMP-3, and VEGF mRNA expression.</p

    HSA-Flag-TWEAK does not affect echocardiographic measurements after MI.

    No full text
    <p>Animals underwent echocardiography on day 1, day 3, day 21 (data not shown) and day 56 (data not shown) after MI. All measurements were recorded at the midpapillary level which shows changes in the dimensions of the surviving non-infarcted myocardium, as well as on the apical level depicting changes in scar formation.</p><p>Data are means ± sem; <i>n</i> indicates number of animals studied. EDA, end-diastolic area; ESA, end-systolic area; FS, fractional shortening; 2D, 2-dimensional.</p

    HSA-Flag-TWEAK increases mortality and cardiac ruptures after MI.

    No full text
    <p>(A) Percent survival was significantly deceased in HSA-Flag-TWEAK treated mice after MI compared to placebo-treated mice. (B) Most HSA-Flag-TWEAK treated mice died because of left ventricular ruptures.</p

    MI induces the expression of TWEAK and Fn14 in the mouse heart.

    No full text
    <p>(A) TWEAK and (B) Fn14 mRNA expression were significantly increased 3 days after experimental MI. Fn14 mRNA expression was significantly increased after 8 weeks of MI. (C) Immunohistological staining after 3 day of MI revealed high expression of Fn14 protein in the border zone of the myocardium co-localizing with periostin expression. (D) Periostin positive fibroblasts are the main source of Fn14 expression in the infarcted heart and αSAA positive cardiomyocytes show no expression of Fn14. (E) Isolated cardiac mouse fibroblasts express Fn14 whereas (F) isolated cardiomyocytes show no Fn14 expression.</p

    HSA-Flag-TWEAK treatment modulates the expression of cytokines and chemokines via NFÎșB and JAK/STAT-signalling.

    No full text
    <p>The protein-protein interaction network maps cytokine and chemokine data from the protein microarrays onto the human interactome. Circles indicate proteins; kinases are depicted in triangular shape, each specified by gene names. They are connected either by gray lines indicating protein-protein interactions or red arrows denoting phosphorylation reactions. The functional entities are highlighted (interleukins, chemokines, JAK/STAT pathway). Green-colored nodes show up-regulation in the TWEAK stimulation (orange) condition.</p
    corecore