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Abstract

Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was
shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1,
which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the
effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a
syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject
Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF
deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors
in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box
P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by
transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal
CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however,
which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the
capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to
determine finally the overall outcome.
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Introduction

Pancreatic ductal adenocarcinoma (PDA) is one of the most

devastating malignancies with exceptionally poor 5-year survival

rates and very limited therapeutic options [1–3]. Various signaling

pathways are perturbed in pancreatic cancer and this not only

affects the tumor cells directly but also applies to the stromal cells

within and around the tumor [4–6]. Especially NF-kB signaling is

commonly deregulated in PDA [7–9]. A major activator of NF-kB
is the cytokine tumor necrosis factor (TNF), which is mainly

produced by activated immune cells, especially macrophages and

T cells, but can also be expressed by tumor cells [10,11].

TNF is a trimeric transmembrane type II protein from which a

soluble form is released by proteolytic processing. The two forms

of TNF interact with two receptors, TNFR1 and TNFR2, but

differ in their ability to activate these receptors. Membrane-bound

TNF strongly activates both receptors whereas soluble TNF,

despite binding to TNFR2, only activates TNFR1 properly [12].

While TNFR1 is a typical representative of the death domain-

containing subgroup of the TNF receptor protein family, TNFR2

belongs to the TRAF-interacting subgroup. Even though having a

death domain, TNFR1 in response to TNF primarily initiates pro-

inflammatory signaling pathways leading to the activation of NF-

kB transcription factors and various MAP kinases but typically not

in cell death induction. It is evident from the analysis of TNFR1

and TNFR2 knockout mice that many immunoregulatory

processes are controlled by the two TNF receptors in an

antagonistic, additive or even synergistic way but there is also

evidence for autonomous functions of each of the two receptors

[11,13]. In particular, TNFR2 was shown to play an important

role in the homeostasis of immunosuppressive regulatory T cells

(Tregs) [14–16].

In pancreatic cancer TNF plays a complex yet until now poorly

understood role [17–23]. Here, we addressed how TNF and its

receptors impact the immune control of PDA in an orthotopic

syngeneic mouse model. Loss of TNFR1 within the host abrogated

tumor control and resulted in enhanced tumor growth. TNFR1

deficiency caused deregulation of T cell infiltration and activation.
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We propose a novel anti-tumorigenic role of host TNFR1 in PDA

where TNF-TNFR-interactions regulate the homeostasis of both

regulatory and cytotoxic T cells deciding whether PDA is

controlled and eventually rejected or grows progressively.

Materials and Methods

Ethics Statement
All experiments were performed according to the German

regulations for animal experimentation. The study was approved

by the Regierung von Unterfranken as the responsible authority

(Permit Number 55.2-2531.01-76/10). All surgery was performed

under esketamine/xylazine anesthesia, and all efforts were made

to minimize suffering.

Animals
C57Bl/6 deficient for TNF (B6.129S-Tnftm1Gkl/J, short

B6.TNF KO), TNFR1 (C57BL/6-Tnfrsf1atm1Imx/J, short

B6.TNFR1 KO), TNFR2 (B6.129S7-Tnfrsf1btm1Imx/J, short

B6.TNFR2 KO), TNFR1R2 (B6.129S-Tnfrsf1atm1ImxTnfrsf1bt-

m1Imx/J, short B6.TNFR1R2 KO) were initially obtained from

Jackson Laboratories (Bar Harbor, ME, USA) and backcrossed to

the albino C57Bl/6 background (C57BL/6J-Tyr,c-2J mice,

Jackson Laboratories) for improved in vivo bioluminescence

imaging sensitivity (reduced light absorption due to lack of

melanin in the skin) as described previously [16]. Genotypes of

KO mice were routinely checked by PCR. Female mice were used

for experiments between 8 and 12 weeks of age. All mice were

bred within the specified pathogen-free animal facility of the

Center for Experimental Molecular Medicine of the University

Hospital, Würzburg receiving rodent chow and autoclaved

drinking water ad libitum.

Cell Culture
For lentiviral transduction of Panc02 cells [24], 293 T cells were

transiently transfected with a standard calcium phosphate

precipitation protocol in 10 cm dishes with 10 mg pMDL and

5 mg RSV-REV packaging plasmids, 6 mg VSV/G envelope

plasmid and 20 mg of the eGFP and firefly luciferase encoding

plasmid FUGLW. Two days later, the supernatant containing the

lentiviral particles was aspirated, filtered through a 0.45-mm filter,

8 mg polybrene/ml were added and the mixture was used to

transduce the tumor cells. The transduced cells were flow sorted

twice for eGFP-expression, termed hereafter Panc02-FUGLW.

Cells were maintained in Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with 10% fetal bovine serum (FBS), 1%

antibiotics (penicillin, streptomycin), L-glutamine and 0.1% b-
mercaptoethanol. Cells were trypsinized and passaged twice

weekly. Cell culture medium and supplements were obtained

from Invitrogen (Darmstadt, Germany), all plastic ware was from

Greiner BioOne (Frickenhausen, Germany). Panc02-FUGLW

cells are syngeneic to C57BL/6 mice.

Orthotopic PDA Model and In Vivo Bioluminescence
Imaging
Panc02-FUGLW cells were trypsinized, harvested and washed

twice with PBS. Recipient mice were anesthetized with i.p.

injection of 80 mg/kg body weight (bw) esketamine hydrochloride

Table 1. Primer sequences used for qRT-PCR.

Gene forward primer reverse primer

eGFP (FUGW vector) CAA GGG CGA GGA GCT GTT CA CGT AGG TCA GGG TGG TCA CG

PD-1 (PDCD1: NM_008798.2) ACA TCC TTG ACA CAC GGC GCA TCT GGT TTG GGC GAG GGG CT

PDL-1 (PDCD1lg1: NM_021893.3) CGC AGG CGT TTA CTG CTG CAT TCA CGG GTT GGT GGT CAC TGT

Arginase 1 (NM_007482) CTG TGA ACA CGG CAG TGG CT CCC TTG GGA GGA GAA GGC GT

CTLA-4 (NM_009843.3) ACC GCC ATA CTT TGT GGG CA GGC TCT GTT GGG GGC ATT TT

Galectin 9 (Lgals9: NM_010708.2) GTG CAG TAC CAA CAC CGC GT TCC GTG GGA ACT GGA CTG GC

VEGF (NM_001025250.3+ NM_009505.4+ NM_001025257.3) GCT GTA CCT CCA CCA TGC CA TTA CAG CAG CCT GCA CAG CG

VEGF (NM_001110266.1+ NM_001110267.1+ NM_001110268.1) GCT GGG TCA CTA ACC ACT GT GTC TGC ATT CAC ATC TGC TG

IDO (NM_008324) TGT GGC TAG AAA TCT GCC TG CGC AGT AGG GAA CAG CAA TA

iNOS (NM_010927.3) GGC AGC CTG TGA GAC CTT TG GCA TTG GAA GTG AAG CGT TTC

TIM-3 (Havcr2: NM_134250.2) CGG AGA GAA ATG GTT CAG AGA TTC ATC AGC CCA TGT GGA AAT

GM-CSF (NM_009969.4) GAG CAG GGT CTA CGG GGC AA TTC AGA GCT GGC CTG GGC TT

TNFR1 (NM_011609.4) GCT GGA GAT GCA GAA CGG GC ACG AGG GGG CGG GAT TTC TC

TNFR2 (NM_011610.3) GGA ACC TGG GTA CGA GTG CCA GCG GAT CTC CAC CTG GTC AGT

TNF (NM_013693.2) CCA CGT CGT AGC AAA CCA CC GGT GAG GAG CAC GTA GTC GG

IL-2 (NM_008366.3) CTC TGC GGC ATG TTC TGG ATT CAG AAA GTC CAC CAC AGT TGC T

IL-12A (NM_008351.2) CGT CGT GAC CAT CAA CAG GG GTG CCA CCT TTG GGG AGA TG

Interferon gamma (NM_008337.3) TCA GCA ACA GCA AGG CGA AA TCT CTT CCC CAC CCC GAA TC

IL-4 (NM_021283.2) GGT CTC AAC CCC CAG CTA GT CCC TTC TCC TGT GAC CTC GT

IL-6 (NM_031168.1) CCA TCC AGT TGC CTT CTT GGG GGT CTG TTG GGA GTG GTA TCC T

IL-10 (NM_010548.2) GAC TTT AAG GGT TAC TTG GGT TGC ACT CTT CAC CTG CTC CAC TGC

IL-15 (NM_008357.2) ATC GCC ATA GCC AGC TCA TC ACC TAC ACT GAC ACA GCC CAA

IL-17A (NM_010552.3) GCG GCT GAC CCC TAA GAA AC ACA CGA AGC AGT TTG GGA CC

doi:10.1371/journal.pone.0075737.t001

TNF and TNFR1 in Pancreatic Cancer
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(Pfizer, Berlin, Germany) and 16 mg/kg bw xylazine (cp Pharma,

Burgdorf, Germany) and placed on a 37uC heating plate. Panc02-

FUGLW cells were injected orthotopically as described elsewhere

[17,25] with slight modifications. Briefly, the abdominal cavity was

opened by a minimal invasive transverse laparotomy. The head of

the pancreas was identified and externalized. 16104 viable

Panc02-FUGLW cells were slowly injected in 30 ml PBS into the

head of the pancreas using a 710 RN 100 ml Hamilton syringe

with a Gauge 28, 10 mm, Point Style 4 needle (Hamilton Syringe,

Bonaduz, Switzerland). The pancreas was placed back into the

abdominal cavity and the peritoneum and the skin were closed by

running single-layer of 6-0 polyglactin sutures (Johnson & Johnson,

Norderstedt, Germany).

For TNF treatment, mice were injected i.p. with 5 mg human

TNF in 200 ml PBS every other day starting on the day of tumor

cell inoculation. For in vivo bioluminescence imaging [26], mice

were anesthetized and co-injected with 300 mg/kg bw D-luciferin

(Biosynth, Staad, Switzerland). Ten minutes later, biolumines-

cence signals of the anesthetized mice were assessed with an IVIS

Spectrum imaging system (Caliper Life Sciences, Mainz, Ger-

many). Pictures were taken from the lateral view in automatic

mode with a maximum exposure time of five minutes per picture.

Pictures were evaluated using Living Image 4.0 software (Caliper

Life Sciences).

Ex vivo Imaging
On day 23 or 30 after tumor cell inoculation, mice were injected

with D-luciferin and 10 minutes later euthanized. Internal organs

were removed and subjected to ex vivo bioluminescence imaging

Figure 1. Loss of host TNFR1 abrogates spontaneous rejection of orthotopic Panc02 tumors. Murine pancreatic ductal adenocarcinoma
(Panc02) cells were transduced to stably express eGFP and firefly luciferase and 104 tumor cells were injected orthotopically into albino C57Bl/6 mice.
Tumor growth in wild type mice (B6.WT) and mice that were deficient for TNF or its receptors was determined by in vivo BLI. A: Tumor growth
displayed as total radiance (B6.WT n = 8, B6.TNF KO n = 8, B6.TNFR1 KO n = 6, B6.TNFR2 KO n = 9, B6.TNFR1R2 KO n = 7). B: Exemplary pictures of the
imaging time course of a mouse that spontaneously rejected the tumor (left) and a mouse that could not control tumor progression (right). C: Ex vivo
imaging one month after tumor cell inoculation. Internal organs were imaged for the presence of tumor cells. Exemplary pictures of a mouse that
spontaneously rejected the tumor (I), a mouse with low tumor burden (II), and a mouse with high tumor burden (III). D: Pancreatic tumor size one
month after Panc02 inoculation is displayed as total radiance (B6.WT n = 8, B6.TNF KO n = 8, B6.TNFR1 KO n = 6, B6.TNFR2 KO n = 9, B6.TNFR1R2 KO
n = 5). * p#0.05, ** p#0.01. Combined data from four independent experiments.
doi:10.1371/journal.pone.0075737.g001
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[26]. Tissue samples were embedded in Tissue Tek OCT (Sakura

Finetek, Staufen, Germany) for further histological analysis.

Isolation of Immune Cells from Pancreatic Tissue and
Spleens
Tissues were minced with a surgical blade and digested for 45

minutes at 37uC with 2 mg/ml collagenase D and 0.1 mg/ml

DNase I (both from Roche, Mannheim, Germany). Tissue pieces

were mashed through a 70 mm cell strainer and spun down. The

cell pellet was resuspended in erythrocyte lysis buffer (168 mM

NH4Cl, 10 mM KHCO3, 0.1 mM ethylenediaminetetraacetic

acid (EDTA)) and incubated for 2 minutes. Then 10 volumes of

PBS were added and the cells were spun down again. The

resulting pellet was resuspended in PBS and cells were used for

flow cytometry. Spleens were directly filtered through a 70 mm cell

strainer into erythrocyte lysis buffer and washed once with PBS.

Immunofluorescence Microscopy
Cryo-embedded tissues were cut into 3 mm thick sections on a

Leica CM1900 cryostat (Leica Microsystems, Wetzlar, Germany)

and mounted onto frosted slides. Slides were air-dried and fixed

with acetone at room temperature for 7 minutes. Slides were

washed and blocked with 2% FBS in PBS for 15 minutes. When

biotin-conjugated antibodies were used, additional blocking using

an Avidin/Biotin Blocking kit (Vector Laboratories, Burlingame,

CA, USA) was performed. Slides were then incubated with the

appropriate antibodies for 1 hour at room temperature. Between

antibody-incubations, the slides were washed with PBS thrice.

Slides were counterstained with DAPI and mounted with

mounting medium (Vector Laboratories). Antibodies used were:

CD11b-Alexa 647 (M1/70), CD31-Biotin (MEC13.3), CD4-Alexa

647 (GK1.5), CD8-Biotin (53-6.7), Foxp3-purified (FJK-16s)

(eBioscience), donkey-anti-rat-Cy3 (Dianova, Hamburg, Ger-

many), F4/80-Alexa 488 (CI:A3-1), GR-1-Biotin (RB6-8C5),

Figure 2. Loss of host TNFR1 perturbs the immunologic control of pancreatic ductal carcinoma. Panc02-tumors were explanted one
month after tumor cell inoculation, consecutive histological sections were stained for indicated immune cell populations and blood vessels (CD31).
Pancreatic tumors resulted in an influx of immune cell populations of the innate and adaptive immune system that were not observed in healthy
pancreatic tissue under steady-state conditions. Of note, deficiency of TNFR1 resulted in a reduced cytotoxic CD8+ T cell infiltration but increased Treg

cell infiltration. Exemplary photomicrographs are shown. Scale bar indicates 100 mm.
doi:10.1371/journal.pone.0075737.g002

TNF and TNFR1 in Pancreatic Cancer
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streptavidin-Alexa 546 (Invitrogen). Images were obtained with a

Zeiss Imager.Z1m fluorescence microscope (Carl Zeiss, Göttingen,

Germany) and evaluated using Zeiss AxioVision software (Carl

Zeiss). Immune cells were counted and given as cells/mm2 or as

pixels/150 000 mm2 as assessed by Image J software (NIH,

Bethesda, MD).

Flow Cytometry
Cells were blocked with normal rat serum (1:20 in PBS) and

stained with appropriate antibodies at 4uC for 30 min. Following

surface antigen staining, cells were washed once with PBS and

labelled with propidium iodide. For intracellular staining, cells

were stained with LIVE/DEAD fixable violet dead cell stain kit

(Invitrogen) and further processed using the Mouse regulatory T

cell staining kit #2 (eBioscience, Frankfurt, Germany) according

to the manufacturer’s protocol. Antibodies used were from

Biolegend (Uithoorn, The Netherlands) if not stated otherwise:

a4b7-PE (DATK32), CCR4-APC (2G12), CCR5-PE (C34-3448),

CCR7-APC (4B12), CD102-Biotin (3C4 (MIC2/4)), CD103-

Pacific Blue (2E7), CD106-Alexa 488 (429), CD107a-FITC

(1D4B), CD107b-Alexa 647 (M3184), CD11a-PE (M17/4) (BD),

Figure 3. Loss of host TNFR1 does not affect the activation
status of tumor-infiltrating T cells. Pancreata and spleens from
naı̈ve and tumor-bearing mice one and two weeks after tumor cell
inoculation were explanted and prepared as single cell suspensions. T
cells were analyzed for the expression of activation-associated surface
receptors by flow cytometry. Furthermore, the percentage of Tregs,
myeloid cells and tumor cells was determined by flow cytometry (w/o
tumor: B6.WT n = 8, B6.TNFR1 KO n = 6; d+7: B6.WT n = 7, B6.TNFR1 KO
n = 6; d+15: B6.WT n = 7, B6.TNFR1 KO n = 7). *p#0.05, **p#0.01.
Combined data from four independent experiments.
doi:10.1371/journal.pone.0075737.g003

Table 2. Loss of host TNFR1 perturbs the immunologic control of Panc02 tumors.

Genotype
CD8+
(mm22)

CD4+

(mm22)
Tregs

(mm22)
F4/80+

(densitiy6104)
CD11b+

(densitiy6104)
CD11b+GR-1+

(mm22)
CD31+

(densitiy6103)

B6.WT 158.9614.2 149.4683.2 42.2623.0 29.665.6 14.964.8 171.7670.2 20.262.7

B6.TNF KO 209.8636.5 208.4679.1 72.4629.1 29.662.1 8.862.1 186.7697.3 15.562.9

B6.TNFR1 KO 127.1626.7 374.7662.6 177.8635.4* 30.967.2 7.063.3 167.6653.0 26.265.7

B6.TNFR2 KO 262.6659.6 100.7621.8 35.267.6 29.361.5 9.963.1 201.1673.0 19.163.1

B6.TNFR1R2 KO 64.4627.1* 295.66155.7 116.1652.8 29.666.7 4.661.9 122.2635.3 42.963.9**

Panc02-tumors were explanted one month after tumor cell inoculation, sectioned, and stained for different immune cells and blood vessels (B6.WT n = 4, B6.TNF KO
n = 5, B6.TNFR1 KO n = 5, B6.TNFR2 KO n = 6, B6.TNFR1R2 KO n = 4).
*p#0.05, ** p#0.01.
doi:10.1371/journal.pone.0075737.t002

Figure 4. Loss of host TNFR1 affects the expression of
immunosuppressive genes and IL-4. Panc02-tumors were explant-
ed one month after tumor cell inoculation and total RNA was isolated
from the tumor tissue. RNA was reverse transcribed and amplified by
qRT-PCR. Data is presented as relative expression within tumors derived
from B6.TNFR1 KO mice compared to tumors derived from wild type
(WT) mice (B6.WT n = 3, B6.TNFR1 KO n = 4). * p#0.05.
doi:10.1371/journal.pone.0075737.g004

TNF and TNFR1 in Pancreatic Cancer
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CD11b-Alexa 647 (M1/70), CD11b-PE/Cy7 (M1/70), CD11c-

Alexa 647 (N418), CD25-PE (PC61.5) (eBioscience), CD24-PE

(LG.7F9) (eBioscience), CD29-PE (HMb1-1), CD4-FITC (RM4-5)

(eBioscience), CD4-APC (RM4-5), CD44-PE (IM7), CD45.1-PE

(A20), CD45.2-APC (104), CD49d-Alexa 647 (RI-2), CD49f-Alexa

488 (GoH3), CD54-PE (YN1/1.7.4), CD62E-PE (10E9.6) (BD),

CD62L-APC/Cy7 (MEL-14), CD69-Pacific Blue (H1.2F3), CD8-

PE/Cy7 (53-6.7), CXCR3-APC (CXCR3-173), CXCR4-Alexa

488 (2B11) (eBioscience), E-Selectin IgG fusion protein (R&D

Systems, Wiesbaden, Germany), F4/80-Alexa 488 (C1:A3-1),

Foxp3-APC (FJK-16s) (eBioscience), Ly6G-PE (1A8) (BD), P-

Selectin IgG fusion protein (BD), TNFR1-APC (55R-286),

TNFR2-PE (TR75-89), goat-anti-human IgG-PE (Jackson), strep-

tavidin-Alexa 546 (Invitrogen). All experiments were performed on

a BD FACS Canto II (BD) and sample data recorded using BD

FACSDiva software and analyzed using FlowJo software (Tree

Star, Ashland, OR, USA).

RNA Isolation, Reverse Transcription and qRT-PCR
RNA was isolated from tissue samples using Qiashredder and

RNeasy mini kit spin columns (Qiagen, Hilden, Germany). 1 mg
total RNA was reverse transcribed using the QuantiTect Reverse

Transcription Kit (Qiagen). Expression for genes of interest

(primer sequences can be found in table 1) was analysed on an

iCycler thermocycler (Bio-Rad, Munich, Germany) using iTaq

Universal SYBR Green Supermix (Bio-Rad) and b-actin as

reference gene. Expression levels were calculated using the DDCT

method.

In vitro TNF Treatment and Assessment of Metastatic
Capabilities
16105 Panc02 cells per well were seeded in 6 well plates and left

overnight. Cells were treated with 1.67 nM human TNF or

1.67 nM murine TNF for 48 h, harvested by gently scraping the

monolayer off the plastic surface, washed twice with PBS and

assessed for the expression of adhesion molecules and chemokine

receptors by flow cytometry.

To test the capability of Panc02 cells to attach to different

extracellular matrix components, the CytoSelect 48-well Cell

Adhesion Assay (Cell Biolabs, San Diego, CA, USA) was used

according to the manufacturer’s instruction. To test the capability

of Panc02 cells to invade the basement membrane, the CytoSelect

24-Well Cell Invasion Assay (Cell Biolabs) was used according to

the manufacturer’s instruction.

Untreated and TNF-treated Panc02 cells were further assessed

for the activity of matrix metalloproteinases MMP-2 and MMP-9

by gelatin zymography. For protein isolation, myocardium tissue

of an infarcted mouse heart as well as Panc02-FUGLW cell pellets

were homogenized with Ripa buffer and PMSF (Cell Signaling,

Frankfurt, Germany). The samples were separated on a 10%

polyacrylamide gel containing 2.5 mg/ml gelatin at a constant

voltage of 120 V for 2 h at 4uC. After electrophoresis, the proteins
were renaturated by incubation of the gels in 2.5% Triton X-100

for 90 min at room temperature. The gels were then incubated in

activation buffer (50 mM Tris-HCl, pH 7.5, 5 mM CaCl2, 0.2 M

NaCl, and 0.02% Brij-35) for 12 h at 37uC. Finally, the gels were
stained for 1 h with 0.5% coomassie blue staining solution and

then destained in 40% v/v methanol, 10% v/v acetic acid to

reveal bands of clearing which indicate proteolytic activity. The

band intensity was quantified using ImageJ (version 1.44p).

Statistics
All graphs shown are combined data from at least two

independent experiments; the number of animals is indicated in

the figure legends. All data are shown as mean6 standard error of

mean. Figures were prepared using GraphPad Prism 5 software

(La Jolla, CA, USA) and Adobe Photoshop 7 (San Jose, CA, USA).

All groups were compared to the wild type or untreated control

group, respectively by two-tailed unpaired student’s t-test using

Table 3. Exogenous TNF treatment perturbs the immunologic control of Panc02 tumors.

Treatment CD8+ (mm22) CD4+ (mm22) Tregs (mm22) CD31+ (densitiy6103)

Untreated 342.9680.6 302.9665.1 86.0623.8 12.361.8

TNF 376.3688.9 425.2670.9 158.8622.9 * 14.362.1

Panc02-tumors from untreated and human TNF treated mice were explanted 23 days after tumor cell inoculation, sectioned, and stained for different immune cells and
blood vessels (untreated n = 7, TNF n = 9). * p#0.05.
doi:10.1371/journal.pone.0075737.t003

Figure 5. Exogenous TNF treatment increases orthotopic
Panc02 tumor growth. 104 tumor cells were injected into the spleen
of albino B6.WT mice. The mice were either left untreated or were
treated every other day with 5 mg of recombinant human TNF. Tumor
growth was determined by in vivo BLI. A: Tumor growth displayed as
total radiance (untreated n = 11, TNF n = 10). B: Ex vivo imaging 23 days
after tumor cell inoculation. Internal organs were imaged for the
presence of tumor cells. Pancreatic tumor size is displayed as total
radiance (untreated n = 11, TNF n = 10). ** p#0.01. Combined data from
two independent experiments.
doi:10.1371/journal.pone.0075737.g005

TNF and TNFR1 in Pancreatic Cancer
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GraphPad InStat 3 software. Data reaching statistical significance

are indicated as: * p # 0.05, ** p # 0.01.

Results

Loss of Host TNFR1 Abrogates Spontaneous Rejection of
Orthotopic Panc02 Tumors
In order to follow tumor growth non-invasively in a syngeneic

mouse model of PDA, we generated Panc02 cells expressing eGFP

and firefly luciferase (Panc02-FUGLW) and injected 16104 of

these tumor cells orthotopically into albino wild type C57Bl/6

mice and albino C57Bl/6 mice deficient for TNF, TNFR1,

TNFR2 or both TNFRs. In all genotypes assessed, Panc02-

FUGLW tumors initially grew for the first 7 days following tumor

inoculation (Figure 1A and B). 3/8 B6 wild type mice, 1/8

B6.TNF KO mice, and 2/9 B6.TNFR2 KO mice spontaneously

rejected the tumor within 14 days. In contrast 13/13 mice

deficient for TNFR1 or TNFR1 and TNFR2 could not reject the

tumor. In vivo BLI (Figure 1A and B) and ex vivo BLI one month

after tumor inoculation (Figure 1C and D) also revealed

significantly higher tumor burden in mice deficient for TNFR1

(or TNFR1 and TNFR2) than in wild type mice. Thus, TNFR1

appeared as an important factor for the control and rejection of

Panc02 tumors.

Panc02 Tumors Show Altered T Cell Infiltration in
B6.TNFR1 KO Mice
Next, we analyzed immune cell infiltration into Panc02-

FUGLW tumors grown in either C57Bl/6 wild type or C57Bl/6

mice deficient for TNF, TNFR1 or TNFR2 (Figure 2 and Table 2)

to address whether the loss of tumor control might be related to

changes in the immune cell infiltrate of the tumor. Loss of TNFR1

correlated with decreased numbers of infiltrating CD8+ T cells and

increased numbers of infiltrating CD4+Foxp3+ Tregs. TNFR1

deficiency furthermore significantly increased vascular density as

assessed by CD31-expression but did not significantly modify

infiltration with innate immune cells of the myeloid lineage

(CD11b+, F4/80+, Gr1+ cells). The altered T cell infiltration

Figure 6. Panc02 cells show little in vitro capabilities for metastasis. Panc02 cells were treated with 1.67 nM of human TNF or mouse TNF for
48 hours, or left untreated. A: Adhesion to different extracellular matrix proteins (n = 4). B: Flow cytometric determination of the expression of
proteins involved in adhesion and migration (n = 3). C: Invasive capabilities of Panc02 cells. Left panel: In vitro invasion of the basement membrane
(n = 3). Right panel: Gelatin zymography of tumor cell samples. Infarcted mouse heart lysate was used as a positive control (n = 4).
doi:10.1371/journal.pone.0075737.g006
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patterns of Panc02-FUGLW tumors from B6.TNFR1 KO one

month after inoculation prompted us to assess the T cell

phenotype in the early stage of tumor expansion. Therefore, we

analyzed the expression of activation markers on CD4+ and CD8+

T cells 7 and 15 days after tumor cell injection (Figure 3). T cell

activation markers only subtly differed. Yet, we observed a trend

towards higher activation with time of CD8+ T cells (expression of

CD25 and CD69) and lower activation of CD4+ T cells

(expression CD27, CD54, and CD69). Tumor growth was strongly

associated with myeloid inflammation. Flow cytometry revealed

increased percentages of CD11b+ and Ly6G+ cells in the pancreas

over time independent of the genetic background of tumor bearing

mice. Interestingly, on a systemic level, loss of TNFR1 resulted in

significantly decreased CD11b+ and Ly6G+ cell numbers in the

spleens of tumor-bearing mice. Increased tumor growth within

pancreata of TNFR1 KO mice was confirmed by significantly

elevated numbers of eGFP+ Panc02-FUGLW cells in these mice

two weeks after tumor inoculation (Figure 3).

To further assess the mechanistic differences of tumor control

between wild type and TNFR1 KO mice, we assessed the

expression of immunosuppressive genes and various cytokines in

Panc02-FUGLW tumors (Figure 4). Here, we observed on a

transcriptional level significantly increased expression of Galectin-

9 and IL-4 while the expression of iNOS was significantly reduced.

Exogeneous TNF does not Induce Metastasis Despite
Enhancing Tumor Growth and Influencing Treg

Homeostasis
TNF was shown to enhance tumor cell metastasis in several

in vivo mouse models [27–29] including an orthotopic xenotrans-

plantation model of PDA with pancreatectomy-induced metastasis

[17]. To test whether TNF also influences Panc02-FUGLW tumor

growth and metastasis, we treated tumor bearing mice with

recombinant human TNF, which only binds to murine TNFR1,

every other day for three weeks following tumor cell inoculation.

This significantly increased overall tumor growth within pancreata

and ablated spontaneous tumor rejection as assessed with in vivo

and ex vivo BLI (Figure 5A and B) but did not induce metastasis to

the liver, the kidneys, or the mesentery (data not shown). We also

analyzed the infiltration of CD8+ and CD4+ T cells, and Tregs into

tumors of untreated and TNF-treated animals and indeed

observed that human TNF treatment significantly increase Treg

numbers within the tumors (Table 3). Since we and others have

found previously that TNFR2 rather than TNFR1 on Tregs is

required to drive their expansion [14–16], this points to an indirect

mechanism by which administration of human TNF triggers Treg

expansion in our PDA model.

Panc02 Cells Show Little In Vitro Capabilities for
Metastasis
Due to the limited metastatic activity of Panc02 cells in vivo, we

analyzed the metastatic capabilities of these cells in vitro particu-

larly also upon TNF stimulation. Panc02 cells adhered to

extracellular matrix proteins fibronectin, laminin I, and fibrino-

gen, but neither to collagen I nor IV. Neither human nor murine

TNF modified adhesion of Panc02 cells to extracellular matrix

components (Figure 6A) despite strong triggering of the classical

NF-kB pathway (data not shown). Next, we analyzed Panc02 cells

for their expression of proteins involved in adhesion and migration

of cells (Figure 6B). We found the PDA tumor cells to express

CD29 (integrin b1), CD49f (integrin a6), and CD107a and b, the

expression of which was not modulated by TNF. CD106 (VCAM-

1) expression, however, was induced by TNF. We also assessed the

invasive capability of Panc02 cells by using an in vitro invasion

assay and measuring gelatinolytic activities (Figure 6C). TNF did

not significantly induce invasion and whereas infarcted mouse

myocardium showed MMP-9 and -2 activities, Panc02 cells did

not, irrespective of TNF stimulation. In sum, the results of the

in vitro analysis of metastasis-related factors confirmed the limited

metastatic activity observed with Pan02 cells in vivo.

Discussion

Here we demonstrated that TNFR1 is an important receptor for

the immunologic control of PDA. Loss of this receptor within the

host results in perturbations of immune cell infiltration into the

tumor and ablates immunosurveillance mechanisms. Nevertheless,

exogenous activation of TNFR1 with recombinant TNF in tumor-

bearing animals resulted in enhanced tumor progression, speaking

for a double-edged role of TNF-TNFR1-interactions in PDA

tumor control.

A recent study analyzed T antigen-induced multistage carcino-

genesis in pancreatic islets and found that while in wild type mice

infiltrating CD4+ T cells induced tumor dormancy, loss of TNFR1

on these cells switched them to a tumor-promoting phenotype by

stimulating angiogenesis [18]. These observations are in line with

our results, i.e. the loss of TNFR1 increased vascular densities

within the tumors. While TNFR1-deficiency did not consistently

modify the activation phenotype of tumor-infiltrating T cells, we

found more CD4+ T cells infiltrating the tumors in TNFR1-

deficient than in wild type mice. Furthermore, we observed

decreased numbers of infiltrating CD8+ T cells and increased

numbers of Tregs. Chee and colleagues found the loss of TNFR1 in

NOD mice to protect them from diabetes by affecting the homing

of conventional T cells into pancreatic islets while increasing the

numbers of Treg cells [30]. In our model, TNFR1 deficiency

resulted in changes in the expression of IL-4, Galectin-9, and

iNOS. In line with this, IL-4 has been described as a potent TH2

cytokine [31] that was proposed to promote PDA tumor cell

growth and thereby play an active role in tumor progression of this

malignancy [32,33]. Galectin-9 suppresses TH1 immune functions

[34] and induces Tregs [35]. The role of this protein in PDA is not

well established, nevertheless, increased expression of both IL-4

and Galectin-9 might hint towards a mechanism explaining

increased CD4+ T cell and Treg infiltration into Panc02 tumors

grown in TNFR1-deficient mice. iNOS was described to be

upregulated in pancreatic tumors [36,37].

The role of TNF in pancreatic tumor progression is controver-

sial. While some studies demonstrated anti-tumorigenic properties

of TNF [19,21], others have shown the opposite results [17,20].

We demonstrate here a pro-tumorigenic function of systemically

active TNF as the treatment of tumor-bearing mice with this

cytokine significantly increased tumor growth. This goes along

with elevated numbers of Tregs within the tumors. We have

recently shown a similar mechanism in the B16F10 pulmonary

metastasis model [16] where exogenous TNF treatment enhanced

tumor growth in a Treg-dependent manner.

TNF is known to play a promoting role in cancer metastasis

[16–17,27–29]. Despite this, we did not observe increased

metastasis of the primary Panc02 tumor to the liver upon

exogenous TNF treatment. Whereas PDA readily metastasizes in

other models [17,38] and in human patients [39,40], the Panc02

tumor does not appear to have the capabilities to metastasize

spontaneously. The tumor cells showed very little gelatinolytic

capacity and in vitro neither their invasive nor their adhesive

capabilities were modulated by TNF stimulation.
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In summary, we propose a role of TNFR1 in tumor

immunosurveillance of PDA. While our data speak for an immune

mediated anti-tumorigenic effect of TNF via TNFR1, as

cautionary result we also observed that the exogenous treatment

of tumor-bearing mice with TNF augmented tumor growth rather

than controlled it.
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22. Röder C, Trauzold A, Kalthoff H (2011) Impact of death receptor signaling on

the malignancy of pancreatic ductal adenocarcinoma. Eur J Cell Biol 90: 450–

455.

23. Ariapart P, Bergstedt-Lindqvist S, van Harmelen V, Permert J, Wang F, et al.

(2012) Resection of pancreatic cancer normalize the preoperative increase of

tumor necrosis factor alpha gene expression. Pancreatology 2: 491–494.

24. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, et al. (1984)

Induction and chemotherapeutic response of two transplantable ductal

adenocarcinoma of the pancreas in C57BL/6 mice. Cancer Res 44: 717–726.

25. Tepel J, Kruse ML, March C, Fiedler A, Kapischke M, et al. (2004) Terminally

modified oligodeoxynucleotides directed against p53 in an orthotopic xenograft

model: a novel adjuvant treatment strategy for pancreatic ductal carcinoma.

Pancreas 28: 1–12.

26. Beilhack A, Schulz S, Baker J, Beilhack GF, Wieland CB, et al. (2005) In vivo

analyses of early events in acute graft-versus-host disease reveal sequential

infiltration of T-cell subsets. Blood 106: 1113–1122.

27. Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, et al. (1993)
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