9,141 research outputs found
Evolution of Supermassive Black Holes from Cosmological Simulations
The correlations between the mass of supermassive black holes and properties
of their host galaxies are investigated through cosmological simulations. Black
holes grow from seeds of 100 solar masses inserted into density peaks present
in the redshift range 12-15. Seeds grow essentially by accreting matter from a
nuclear disk and also by coalescences resulting from merger episodes. At z=0,
our simulations reproduce the black hole mass function and the correlations of
the black hole mass both with stellar velocity dispersion and host dark halo
mass. Moreover, the evolution of the black hole mass density derived from the
present simulations agrees with that derived from the bolometric luminosity
function of quasars, indicating that the average accretion history of seeds is
adequately reproduced . However, our simulations are unable to form black holes
with masses above at , whose existence is inferred
from the bright quasars detected by the Sloan survey in this redshift range.Comment: Talk given at the International Workshop on Astronomy and
Relativistic Astrophysics (IWARA 2009), Maresias, Brazil. to be published in
the International Journal of Modern Physics
Modified Renormalization Strategy for Sandpile Models
Following the Renormalization Group scheme recently developed by Pietronero
{\it et al}, we introduce a simplifying strategy for the renormalization of the
relaxation dynamics of sandpile models. In our scheme, five sub-cells at a
generic scale form the renormalized cell at the next larger scale. Now the
fixed point has a unique nonzero dynamical component that allows for a great
simplification in the computation of the critical exponent . The values
obtained are in good agreement with both numerical and theoretical results
previously reported.Comment: APS style, 9 pages and 3 figures. To be published in Phys. Rev.
Are Neutron-Rich Elements Produced in the Collapse of Strange Dwarfs ?
The structure of strange dwarfs and that of hybrid stars with same baryonic
number is compared. There is a critical mass (M~0.24M_sun) in the strange dwarf
branch, below which configurations with the same baryonic number in the hybrid
star branch are more stable. If a transition occurs between both branches, the
collapse releases an energy of about of 3x10^{50} erg, mostly under the form of
neutrinos resulting from the conversion of hadronic matter onto strange quark
matter. Only a fraction (~4%) is required to expel the outer neutron-rich
layers. These events may contribute significantly to the chemical yield of
nuclides with A>80 in the Galaxy, if their frequency is of about one per 1500
years.Comment: Accepted for publication in IJMP
Epidemic model on a network: analysis and applications to COVID-19
We analyze an epidemic model on a network consisting of
susceptible-infected-recovered equations at the nodes coupled by diffusion
using a graph Laplacian. We introduce an epidemic criterion and examine
different vaccination/containment strategies: we prove that it is most
effective to vaccinate a node of highest degree. The model is also useful to
evaluate deconfinement scenarios and prevent a so-called second wave. The model
has few parameters enabling fitting to the data and the essential ingredient of
importation of infected; these features are particularly important for the
current COVID-19 epidemic
Aging in coherent noise models and natural time
Event correlation between aftershocks in the coherent noise model is studied
by making use of natural time, which has recently been introduced in complex
time-series analysis. It is found that the aging phenomenon and the associated
scaling property discovered in the observed seismic data are well reproduced by
the model. It is also found that the scaling function is given by the
-exponential function appearing in nonextensive statistical mechanics,
showing power-law decay of event correlation in natural time.Comment: 4 pages and 5 figure
- …