9,141 research outputs found

    Evolution of Supermassive Black Holes from Cosmological Simulations

    Full text link
    The correlations between the mass of supermassive black holes and properties of their host galaxies are investigated through cosmological simulations. Black holes grow from seeds of 100 solar masses inserted into density peaks present in the redshift range 12-15. Seeds grow essentially by accreting matter from a nuclear disk and also by coalescences resulting from merger episodes. At z=0, our simulations reproduce the black hole mass function and the correlations of the black hole mass both with stellar velocity dispersion and host dark halo mass. Moreover, the evolution of the black hole mass density derived from the present simulations agrees with that derived from the bolometric luminosity function of quasars, indicating that the average accretion history of seeds is adequately reproduced . However, our simulations are unable to form black holes with masses above 109M⊙10^9 M_{\odot} at z∼6z\sim 6, whose existence is inferred from the bright quasars detected by the Sloan survey in this redshift range.Comment: Talk given at the International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, Brazil. to be published in the International Journal of Modern Physics

    Modified Renormalization Strategy for Sandpile Models

    Full text link
    Following the Renormalization Group scheme recently developed by Pietronero {\it et al}, we introduce a simplifying strategy for the renormalization of the relaxation dynamics of sandpile models. In our scheme, five sub-cells at a generic scale bb form the renormalized cell at the next larger scale. Now the fixed point has a unique nonzero dynamical component that allows for a great simplification in the computation of the critical exponent zz. The values obtained are in good agreement with both numerical and theoretical results previously reported.Comment: APS style, 9 pages and 3 figures. To be published in Phys. Rev.

    Are Neutron-Rich Elements Produced in the Collapse of Strange Dwarfs ?

    Full text link
    The structure of strange dwarfs and that of hybrid stars with same baryonic number is compared. There is a critical mass (M~0.24M_sun) in the strange dwarf branch, below which configurations with the same baryonic number in the hybrid star branch are more stable. If a transition occurs between both branches, the collapse releases an energy of about of 3x10^{50} erg, mostly under the form of neutrinos resulting from the conversion of hadronic matter onto strange quark matter. Only a fraction (~4%) is required to expel the outer neutron-rich layers. These events may contribute significantly to the chemical yield of nuclides with A>80 in the Galaxy, if their frequency is of about one per 1500 years.Comment: Accepted for publication in IJMP

    Epidemic model on a network: analysis and applications to COVID-19

    Full text link
    We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: we prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameters enabling fitting to the data and the essential ingredient of importation of infected; these features are particularly important for the current COVID-19 epidemic

    Aging in coherent noise models and natural time

    Full text link
    Event correlation between aftershocks in the coherent noise model is studied by making use of natural time, which has recently been introduced in complex time-series analysis. It is found that the aging phenomenon and the associated scaling property discovered in the observed seismic data are well reproduced by the model. It is also found that the scaling function is given by the qq-exponential function appearing in nonextensive statistical mechanics, showing power-law decay of event correlation in natural time.Comment: 4 pages and 5 figure
    • …
    corecore