98 research outputs found
War Experience and Force Requirements
Naval force requirements—how we size the fleet—are framed by national policies for war. These policies, however indirectly, mandate Navy missions. To fulfill these missions, a fleet must be big enough and capable enough to do the job
Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2
A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target
Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2
A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target
Extraction of the Neutron Magnetic Form Factor from Quasi-Elastic 3He(pol)(e(pol),e') at Q^2 = 0.1 - 0.6 (GeV/c)^2
We have measured the spin-dependent transverse asymmetry, A_T', in
quasi-elastic inclusive electron scattering from polarized 3He with high
precision at Q^2 = 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor, GMn,
was extracted at Q^2 = 0.1 and 0.2 (GeV/c)^2 using a non-relativistic Faddeev
calculation that includes both final-state interactions (FSI) and
meson-exchange currents (MEC). In addition, GMn was extracted at Q^2 = 0.3 to
0.6 (GeV/c)^2 using a Plane Wave Impulse Approximation calculation. The
accuracy of the modeling of FSI and MEC effects was tested and confirmed with a
precision measurement of the spin-dependent asymmetry in the breakup threshold
region of the 3He(pol)(e(pol),e') reaction. The total relative uncertainty of
the extracted GMn data is approximately 3%. Close agreement was found with
other recent high-precision GMn data in this Q^2 range.Comment: Archival paper, 17 pages, 10 figures, 5 tables, submitted to Physical
Review C. v2: shortened considerably, updated comparison to theor
Precision Measurement of the Spin-dependent Asymmetry in the Threshold Region of
We present the first precision measurement of the spin-dependent asymmetry in
the threshold region of at -values of 0.1 and
0.2 (GeV/c). The agreement between the data and non-relativistic Faddeev
calculations which include both final-state interactions (FSI) and
meson-exchange currents (MEC) effects is very good at = 0.1 (GeV/c),
while a small discrepancy at = 0.2 (GeV/c) is observed.Comment: 5 pages, 2 figures, 2 tables. To appear in Phys. Rev. Let
- …