629 research outputs found

    Electron trapping at point defects on hydroxylated silica surfaces

    Get PDF
    The origin of electron trapping and negative charging of hydroxylated silica surfaces is predicted based on accurate quantum-mechanical calculations. The calculated electron affinities of the two dominant neutral paramagnetic defects, the nonbridging oxygen center, equivalent to Si-O-center dot, and the silicon dangling bond, equivalent to Si-center dot, demonstrate that both defects are deep electron traps and can form the corresponding negatively charged defects. We predict the structure and optical absorption energies of these diamagnetic defects

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    No full text
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia

    Get PDF
    This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition

    From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization

    Get PDF
    A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images

    Introduction

    Get PDF
    Psychiatry is the branch of medicine appointed to the diagnosis, treatment, and prevention of mental disorders. Throughout ages, the concept of mental illness had changed many times, and today, the biopsychosocial model tries to explain mental disorders as the result of the complex interaction between biological correlates, psychological factors, and the socio-cultural background. The psychiatric interview is the fundamental element for the evaluation of the subject with mental illness. It allows to have access to the patient’s psychic state, enabling to collect the information that will guide the professional in formulating a diagnosis and through the choice of therapy

    Proof of the thermodynamical stability of the E' center in SiO2

    Full text link
    The E' center is a paradigmatic radiation-induced defect in SiO2 whose peculiar EPR and hyperfine activity has been known since over 40 years. This center has been traditionally identified with a distorted, positively-charged oxygen vacancy V_O+. However, no direct proof of the stability of this defect has ever been provided, so that its identification is still strongly incomplete. Here we prove directly that distorted V_O+ is metastable and that it satisfies the key requirements for its identification as E', such as thermal and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure

    Controlling the charge state of single Mo dopants in a CaO film

    No full text
    Recent experiments have demonstrated that tiny amounts of Mo impurities give rise to drastic changes in the adsorption characteristic of a wide-gap CaO(001) film. In this scanning tunneling microscopy (STM) and density functional theory paper, we elucidate the underlying mechanism by analyzing the energy levels of the Mo dopants as a function of their oxidation state and depth below the surface. We show that Mo2+ ions in CaO subsurface layers can be reversibly charged and discharged by inducing local band-bending effects with the STM tip. A similar charge switching is not possible for Mo species in a higher oxidation state, as their highest-occupied molecular orbitals are located well below the onset of the CaO conduction band. The easiness of charge switching in Mo2+ ions explains the remarkable chemical properties of doped CaO films, as it renders the material a strong electron donor to adsorbates bound to the oxide surface
    • …
    corecore