7,275 research outputs found

    Impact of Hall effect on energy decay in magnetohydrodynamic turbulence

    Get PDF
    We examine numerically the influence of Hall effect corrections to Ohm's law upon the decay of homogeneous compressible magnetohydrodynamic turbulence and conclude that there are no significant differences in global decay rate associated with the Hall effect. This affirms expectations that energy decay is controlled by the large-scale eddies

    Universal scaling of current fluctuations in disordered graphene

    Full text link
    We analyze the full transport statistics of graphene with smooth disorder at low dopings. First we consider the case of 1D disorder for which the transmission probability distribution is given analytically in terms of the graphene-specific mean free path. All current cumulants are shown to scale with system parameters (doping, size, disorder strength and correlation length) in an identical fashion for large enough systems. In the case of 2D disorder, numerical evidence is given for the same kind of identical scaling of all current cumulants, so that the ratio of any two such cumulants is universal. Specific universal values are given for the Fano factor, which is smaller than the pseudodiffusive value of ballistic graphene (F=1/3) both for 1D (F=0.243) and 2D (F=0.295) disorder. On the other hand, conductivity in wide samples is shown to grow without saturation as \sqrt{L} and Log L with system length L in the 1D and 2D cases respectively.Comment: 9 pages, 7 figures. Published version, includes corrected figure for Fano facto

    Inequality and academic achievement in Chile

    Get PDF
    Includes bibliographyThis work uses a set of panel data to contribute new evidence on the impacts of socioeconomic determinants on academic achievement in Chile. Socioeconomic determinants are found to have a statistically significant effect, which rises over time, on academic achievement. The evidence shows that two individuals of different socioeconomic levels (SEL) who achieve the same score in Chile's Educational Quality Measurement System (simce) in eighth grade, are separated by a gap of over 70 points on average four years later, when they sit the University Selection Test (PSU). It is concluded that in a context of great income inequality and high returns on tertiary education, academic achievement indexes throw up barriers to access to tertiary education, principally for the population of low socioeconomic level, thereby perpetuating poor income distribution

    The frequency map for billiards inside ellipsoids

    Full text link
    The billiard motion inside an ellipsoid Q \subset \Rset^{n+1} is completely integrable. Its phase space is a symplectic manifold of dimension 2n2n, which is mostly foliated with Liouville tori of dimension nn. The motion on each Liouville torus becomes just a parallel translation with some frequency ω\omega that varies with the torus. Besides, any billiard trajectory inside QQ is tangent to nn caustics Qλ1,...,QλnQ_{\lambda_1},...,Q_{\lambda_n}, so the caustic parameters λ=(λ1,...,λn)\lambda=(\lambda_1,...,\lambda_n) are integrals of the billiard map. The frequency map λ↊ω\lambda \mapsto \omega is a key tool to understand the structure of periodic billiard trajectories. In principle, it is well-defined only for nonsingular values of the caustic parameters. We present four conjectures, fully supported by numerical experiments. The last one gives rise to some lower bounds on the periods. These bounds only depend on the type of the caustics. We describe the geometric meaning, domain, and range of ω\omega. The map ω\omega can be continuously extended to singular values of the caustic parameters, although it becomes "exponentially sharp" at some of them. Finally, we study triaxial ellipsoids of \Rset^3. We compute numerically the bifurcation curves in the parameter space on which the Liouville tori with a fixed frequency disappear. We determine which ellipsoids have more periodic trajectories. We check that the previous lower bounds on the periods are optimal, by displaying periodic trajectories with periods four, five, and six whose caustics have the right types. We also give some new insights for ellipses of \Rset^2.Comment: 50 pages, 13 figure

    Low magnetic Prandtl number dynamos with helical forcing

    Get PDF
    We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from 0.3 to 0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity fields in the saturated steady state are discussed.Comment: 9 pages, 14 figure

    Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach

    Full text link
    We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity and temperature profiles are obtained as a function of the mixture mass ratio \mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower and cooler than light particles in the strong nonequilibrium region around the shock. The shock width w(\mu), which characterizes the size of this region, decreases as w(\mu) ~ \mu^{1/3} for \mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium, \phi(x) ~ exp[-x/\lambda]. The scale separation is also apparent here, with two typical scales, \lambda_1 and \lambda_2, such that \lambda_1 ~ \mu^{1/2} as \mu-->0$, while \lambda_2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed at the light of recent numerical studies on the nonequilibrium behavior of similar 1d binary fluids.Comment: 9 pages, 8 figs, published versio

    Shell to shell energy transfer in MHD, Part I: steady state turbulence

    Full text link
    We investigate the transfer of energy from large scales to small scales in fully developed forced three-dimensional MHD-turbulence by analyzing the results of direct numerical simulations in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of kinetic energy from the large scales to kinetic energy at smaller scales, and the transfer of magnetic energy from the large scales to magnetic energy at smaller scales, are local, as is also found in the case of neutral fluids, and in a way that is compatible with Kolmogorov (1941) theory of turbulence. However, the transfer of energy from the velocity field to the magnetic field is a highly non-local process in Fourier space. Energy from the velocity field at large scales can be transfered directly into small scale magnetic fields without the participation of intermediate scales. Some implications of our results to MHD turbulence modeling are also discussed.Comment: Submitted to PR

    The Simplest Piston Problem II: Inelastic Collisions

    Full text link
    We study the dynamics of three particles in a finite interval, in which two light particles are separated by a heavy ``piston'', with elastic collisions between particles but inelastic collisions between the light particles and the interval ends. A symmetry breaking occurs in which the piston migrates near one end of the interval and performs small-amplitude periodic oscillations on a logarithmic time scale. The properties of this dissipative limit cycle can be understood simply in terms of an effective restitution coefficient picture. Many dynamical features of the three-particle system closely resemble those of the many-body inelastic piston problem.Comment: 8 pages, 7 figures, 2-column revtex4 forma

    Energy and momentum entanglement in parametric downconversion

    Full text link
    We present a simple treatment for the phenomenon of parametric downconversion considering the coherent scattering of one pump photon into a photon pair by a nonlinear crystal. The energy and momentum entanglement of the quantum state of the generated twin photons are seen as a consequence of the fundamental indistinguishability of the time and the position in which the photon pair is created inside the crystal. We also discuss some consequences of the system entanglement.Comment: 6 pages, 2 figures. v3: Minor changes on the text. Some references were include
    • 

    corecore