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[1] We examine numerically the influence of Hall effect
corrections to Ohm’s law upon the decay of homogeneous
compressible magnetohydrodynamic turbulence and
conclude that there are no significant differences in global
decay rate associated with the Hall effect. This affirms
expectations that energy decay is controlled by the large-scale
eddies. INDEX TERMS: 2149 Interplanetary Physics: MHD

waves and turbulence; 2752 Magnetospheric Physics: MHD waves

and instabilities; 7827 Space Plasma Physics: Kinetic and MHD

theory; 7863 Space Plasma Physics: Turbulence; 7867 Space Plasma

Physics: Wave/particle interactions. Citation: Matthaeus, W. H.,

P. Dmitruk, D. Smith, S. Ghosh, and S. Oughton, Impact of Hall

effect on energy decay in magnetohydrodynamic turbulence,

Geophys. Res. Lett., 30(21), 2104, doi:10.1029/2003GL017949,

2003.

[2] It is of considerable importance in the study of
astrophysical and space-plasma turbulence to understand
the regulation of the rate of decay of turbulent energy, and
the associated rate of heat deposition. Simulations indicate
[Hossain et al., 1995; Mac Low, 1999] that in collisional
homogeneous magnetohydrodynamic (MHD) turbulence,
decay of energy is self-similar and hydrodynamic-like in
that the dissipation rate [von Kármán and Howarth, 1938] is
controlled by the large-scale eddies. While the underpin-
nings of this viewpoint are based upon collisional models,
the same approach accounts well for radial evolution [Zank
et al., 1996] and associated heating [Matthaeus et al., 1999]
of collisionless solar wind turbulence. Of various kinetic
corrections to MHD, the Hall effect [Krall and Trivelpiece,
1973; Turner, 1983] has emerged as being of particular
importance in recent studies of collisionless magnetic re-
connection. Some evidence [Birn et al., 2001] suggests that
the Hall effect is required to correctly simulate reconnection
rates [Shay et al., 1998]. On this basis there appear to be
two possibilities regarding the impact of Hall effect on
energy decay in MHD turbulence.
[3] First, one can argue [von Kármán and Howarth,

1938; Hossain et al., 1995; Mac Low, 1999] that the large
eddies control the dissipation rate and the specific mecha-
nism for small-scale dissipation is not of central importance.
Large-scale fluctuations control the cascade, and fast, small-

scale dissipation mechanisms, whether collisional or not, act
as passive absorbers of cascaded energy. Consequently, the
decay rate of energy would be unaffected by inclusion of
Hall current effects.
[4] A second line of reasoning rests on the observation

that MHD turbulence proceeds through successive, scale-
invariant reconnection events [Matthaeus and Lamkin,
1986]. Therefore, if Hall-MHD gives reconnection rates
that are distinctly different from ordinary viscous-resistive
MHD, the cascade rate might be affected, and hence the
global decay rate of energy would be modified in the
collisionless Hall regime. A clear dichotomy thus is pre-
sented, and in this Letter we report results of numerical
simulations designed to directly examine this issue.
[5] Decay of fluctuation energy is greatly enhanced in

turbulence compared with laminar flow due to the involve-
ment of a wide range of spatial scales—in turbulence
dissipation is typicaly enhanced by a factor (kdl)

2 � 1
where l is the energy-containing scale and kd is the
dissipation wavenumber. Self-similarity of the correlation
functions [von Kármán and Howarth, 1938; Mac Low,
1999] implies that kd � n�1/2. Thus, small-scale gradients
are amplified until the dissipation rate becomes insensitive
to the value of the viscosity n. As a consequence, for
undriven turbulence the overall decay of turbulent energy
is regulated by the large-scale energy-containing eddies.
[6] The Hall effect enters as a correction to Ohm’s law for

low density plasmas. In laboratory units, in terms of
resistivity h, electric current density j, plasma velocity v,
magnetic field B, electric field E, electric charge e, speed of
light c, and number density n, Ohm’s law becomes

Eþ v

c
� B� hj ¼ j� B

nec
; ð1Þ

where electron pressure and electron inertia are neglected
[Krall and Trivelpiece, 1973]. The Hall effect term [r.h.s. of
equation (1)] becomes important at lengths comparable to the
ion inertial scale rii = c/wpi (plasma frequency wpi), which in
low-collisionality astrophysical plasmas is typically 	l,
but rii > ldiss � 1/kd, the latter being the scale at which
dissipation is effective. Therefore the Hall effect may
modify the nonlinear cascade. Recent (‘‘GEM’’) studies
of collisionless reconnection [Birn et al., 2001] emphasize
that the Hall term breaks the ideal MHD property that the
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magnetic field is frozen into the plasma. Consequently, the
Hall effect might modify the cascade by facilitating small-
scale reconnection events, and this may change the energy
decay rate even though Hall effect does not directly cause
dissipation.
[7] The physics of interest is contained in a one-fluid

compressible 3D MHD model, involving the fluctuating
fluid velocity v(x, y, z, t), density r(x, y, z, t) and a magnetic
field B(x, y, z, t) = b(x, y, z, t) + B0, that may include a
uniform constant B0. The standard turbulence units are
based on the mean initial fluctuation speed U0, the charac-
teristic length scale L � l on the order of the simulation box
size (energy-containing scale), and the mean density r0. The
normalized Hall-MHD equations are

@r
@t

þr � rvð Þ ¼ 0; ð2Þ

@v

@t
þ v � rv ¼ � 1

rgM2
s

rP þ j� B

r
þ 1

R
D vð Þ; ð3Þ

@a

@t
¼ v� B� �H

j� B

r
þ 1

Rm

r2a; ð4Þ

where j =r � B, Alfvén speed units are employed (B! B/ffiffiffiffiffiffiffiffiffiffi
4pr0

p
), r � a = b, and r � a = 0. The large-scale

Reynolds number R = 1/n and magnetic Reynolds number
Rm = 1/m are reciprocals of normalized kinematic viscosity n
and magnetic diffusivity m. In equation (3), D(v) = (r2v +
1
3
rr � v)/r. The Mach number is Ms = U0/cs, with cs

2 = @P/
@rjr0. The Hall parameter is �H = rii/L.
[8] For the present purposes it suffices to have polytropic

pressure, P� rg (g = 5/3) and to restrict attention to the small
Ms nearly incompressible regime [Zank and Matthaeus,
1993]. Neglect of electron pressure in Ohm’s law is justified
if gradients of the electron pressure are not too large. The
present results are intended for such cases, and this approx-
imation is favored by near-incompressibility. Fluctuation
amplitudes (exclusive of small compressive contributions)
are conveniently measured by the kinetic energy per unit
mass hjvj2i/2 and the magnetic energy per unit mass hjbj2i/2,
the brackets denoting a volume average. For convenience, we
define Etot = hv2 + b2i/2.
[9] The nonlinear MHD cascade generates progressively

smaller scale fluctuations until scales at which dissipation is
effective are reached. We ask whether the decay of fluctua-
tions differs when the Hall term is present (�H 6¼ 0) versus
when it is absent, varying �H from unity, down through
small values to zero. When �H = rii/L 	 1, as is typical for
astrophysical and space plasmas, the Hall term is negligible
at large scales and contributes significantly at small scales
�rii. In the solar wind �H � 10�4 while in the lower solar
corona �H � 10�5. (See, e.g., parameters in Axford and
McKenzie [1997] and discussion of astrophysical applica-
tions in Mininni et al. [2003].)
[10] Our present studies focus on constant density initial

states with Etot = 1 and low cross helicity Hc = hv � bi and
magnetic helicity Hm = ha � bi. Note that with �H and B0

nonzero, Hm and Hc are no longer conserved in the ideal
equations, but are replaced by a generalized magnetic

helicity [Matthaeus and Goldstein, 1982a] and generalized
hybrid helicity [Turner, 1983; Mahajan and Yoshida, 2000];
for simplicity we retain a description in terms of the former
quantities. For each such initial state we perform various
runs, altering �H and/or B0. The Mach number is fixed at a
low value, Ms = 0.25. Nonzero fluctuation amplitudes are
initially equipartitioned and random-phased in the k-space
(wavevector) shell 1 � jkj � 4. The duration of the runs is
10–20 nominal nonlinear time units, by which time the
energy has decayed substantially. To solve equations (2)–
(4) we employ a triply periodic (side 2pL) Fourier pseudo-
spectral code [Ghosh et al., 1993, 1996], adapted for use on
a Beowulf cluster [Dmitruk et al., 2001]. We report here on
results from runs with resolutions of 643, 1283, and 2563

Fourier modes, with R = Rm = 1000 for 2563 and 1283 runs,
and R = Rm = 400 for 643 runs. This scheme is non-diffusive
(no numerical dissipation of energy), second-order in time,
and ensures exact energy conservation for the continuous
time spatially discrete equations. In principle, stabilized
aliasing and infinite order convergence of this method
(see Ghosh et al. [1993]) render it equivalent to a much
large number of finite difference points. No artificial vis-
cosity or stabilizing filters are employed.
[11] Figure 1 compares representative B0 = 0 simulations,

having �H = 1/32 and 0, showing the time history of the
fluctuation energy Etot. There is very little difference be-
tween runs with and without Hall effect. Also shown is the
sum of mean-square current hj2i and mean-square vorticity
hW2i vs. time, where W = r � v. Only relatively small
differences are seen, mainly near the time of maximum
small-scale activity, at around 1–2 nonlinear times. It is
subsequent to this maximum of dissipation rate that one
expects the onset of self-similar decay.
[12] The difference in total decay rate is small, but closer

examination reveals subtle effects of the Hall term at high k.
In Figure 1, we separate the decay rate for this run into its
contributions from mean-square current and mean-square

Figure 1. 2563 MHD simulations. Top left: fluctuation
energy with Hall effect, �H = 1/32 (dashed line), and without
Hall effect, �H = 0 (solid line); Right: mean-square current
plus mean-square vorticity. Bottom left: mean-square
electric current density; Right: mean-square vorticity.

SSC 4 - 2 MATTHAEUS ET AL.: HALL MHD TURBULENT DECAY



vorticity, thus comparing small-scale structure in the mag-
netic and velocity fields. The Hall effect slightly changes
the balance between current and vorticity structures. In
many astrophysical plasmas this adjustment of small-scale
structure may represent the leading-order modification to

MHD turbulence associated with kinetic effects. Neverthe-
less, we find little effect on turbulence decay rates.
[13] This conclusion is further evidenced by examining a

second series of nine runs, with initial conditions as above,
but varying B0 = 0, 1 and 8 and �H = 0, 1/32 and 1/16. Since
the Hall effect modifies the wave dispersion relationship
obtained by linearization about a uniform B0, one might
expect enhanced influence of the Hall effect when B0 6¼ 0.
This provides a range of dynamical conditions, varying
from isotropic ‘‘zero frequency’’ turbulence at the one
extreme, over to highly anisotropic dynamics with a strong
wave character. Again we find a negative result, shown in
Figure 2. Both with and without Hall effect, the turbulent
fluctuation energy decays very nearly as �1/t. This illus-
trates our principal result.
[14] This result warrants some careful checking. First we

examine the adequacy of spatial resolution. Figure 3 shows
energy and mean-square current spectra from the 2563

simulations (cf. Figure 1). It is evident that the simulations
are well-resolved (spectra are well contained in k-space),
and there are no significant differences due to Hall effect
except at the highest k. Second, the Hall effect engages at
scales � the dissipation scale, so that either cascade or
dissipation processes, or both, may be influenced by the
Hall term. To confirm this, we compare the dissipation
wavenumber kd = hW2 + j2i1/4/

ffiffiffi
n

p
with the Hall scale kH �

�H
�1 = 32. Figure 4, shows that kd > kH throughout the

simulations shown in Figure 1, and for a similar case at
lower resolution. It is evident that the dissipation wave-
number changes very little with changing resolution, sup-
porting the conclusion that the simulations are well
resolved, and that the Hall effect has had an opportunity
to modify the cascade.
[15] An earlier study [Turner, 1983] of Hall effects on

MHD relaxation considered steady properties of statistical
equilibrium, and not the free decay problem. Thus, as far as
we are aware there has previously been no clear answer to
the question we have raised for low-frequency large-scale
MHD energy decay.
[16] The main conclusion we report here—that the Hall

effect in Ohm’s law does not significantly affect decay rates
of homogeneous turbulence—has been verified for Hall
parameter ranging from �H = 1/32 to 1, for various initial

Figure 2. Energy decay for �H = 0, 1/32 and 1/16 (dot-
dash) cases, 1283 runs with identical initial data, and B0 = 0
(top), B0 = 1, and B0 = 8 (bottom).

Figure 3. (Left) Energy spectra from 2563 runs, compar-
ing �H = 0 and 1/32 (k�5/3 shown for comparison.) (Right)
Mean square current spectra at same time.

Figure 4. Dissipation wavenumber kd = hW2 + j2i1/4/
ffiffiffi
n

p

vs. time for the Hall 2563 run (dashed) in Figure 1, and
an otherwise identical 1283 run (solid). Dissipation occurs
at scales smaller than the Hall scale shown here as �H =
kH

�1 = 1/32.
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states. Figure 5 shows an additional sampling of such runs,
once again the conclusion is that the Kármán-Taylor decay
rate is well maintained and there is no significant change
associated with the presence of the Hall term even when it is
rather strong, and much larger relative to energy scale than
in most astrophysical applications.
[17] We also performed runs (not shown) with the ratio

hjvj2i/hjbj2i initially 1/10 or 10, keeping n = m and low
initial Hc and Hm. Again, the decay law remains approxi-
mately �1/t, for values of B0 from 0 to 8. Other runs (also
not shown) with initial high Hm but low Hc and B0 = 0,
exhibit slower energy decay � t�0.6 [Biskamp and Müller,
2000], but again no significant influence of Hall effect.
[18] These simulations provide a partial answer to the

central question at hand. It is difficult to state with certainty
that there are no parameters for which the Hall effect would
be more pronounced. For example, absolute equilibrium
statistical mechanics of Hall MHD [Turner, 1983] suggests
that large-scale inverse transfer effects should appear when
both magnetic and cross helicities are present. This might
lead to changes in global energy transfer rates, and we plan
future investigation of those cases. However, Gibbs equi-
librium studies address neither reconnection nor energy
dissipation in the zero helicity limits, so definitive guidance
on this issue has been lacking. Based upon numerical
experiments, we find for cases with rather widely varying
parameters, that the Hall effect does not have substantial
influence on the global energetics of turbulent decay. Our
results suggest that the Hall effect is responsible for a
modest rearrangement in the generation of mean-square
vorticity and mean-square current, but evidently not the
total amount of dissipation. This appears to be consistent
with the idea [Shay et al., 1998; Wang et al., 2000] that the
Hall effect permits the protons (the momentum bearing
component in simple MHD) to decouple from the magnetic
field at a scale larger than would be otherwise possible.
[19] A remaining question is whether the present results

stand in contradiction to the proposed interpretation of
recent (GEM) simulations of collisionless reconnection
[Birn et al., 2001; Shay et al., 1998; Wang et al., 2000].
We believe there is no contradiction. In the GEM studies,
reconnection commences from an equilibrium, initiated by a
small monochromatic perturbation. In such cases, the de-
tailed structure of the reconnection layer influences the rate

at which the process proceeds. In turbulent dynamics
however, there is always a substantial amount of flow
energy available to drive parcels of plasma towards one
another. Turbulence is therefore not a ‘‘spontaneous’’ re-
connection scenario, but rather is driven. Our results suggest
that the details of the kinetic physics in the reconnection
layer when driving is present may not be of substantial
importance with regard to global energetics.
[20] Understanding how turbulence affects collisionless

plasmas remains an exceedingly important topic in space
physics and astrophysics. Magnetohydrodynamics has been
and is likely to remain a central dynamical description in
such studies. However it has become increasingly recog-
nized that modifications of, and limitations to, the MHD
description must be understood in order to clearly link
MHD results to kinetic plasma descriptions. The present
results provide a step in this direction. There are other
questions regarding kinetic effects on MHD turbulence, and
other ranges of parameters to be explored. In particular, the
influence of nonzero cross helicity and magnetic helicity
(expected from Gibbs ensemble studies [Turner, 1983], and
the effect of higher Reynolds numbers (kinetic and mag-
netic) need to be explored. In addition, the related problem
of the interplay of turbulence and Hall effects on large-scale
reconnection processes emerges as a priority. We plan to
address some of these in future communications.
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