research

The frequency map for billiards inside ellipsoids

Abstract

The billiard motion inside an ellipsoid Q \subset \Rset^{n+1} is completely integrable. Its phase space is a symplectic manifold of dimension 2n2n, which is mostly foliated with Liouville tori of dimension nn. The motion on each Liouville torus becomes just a parallel translation with some frequency ω\omega that varies with the torus. Besides, any billiard trajectory inside QQ is tangent to nn caustics Qλ1,...,QλnQ_{\lambda_1},...,Q_{\lambda_n}, so the caustic parameters λ=(λ1,...,λn)\lambda=(\lambda_1,...,\lambda_n) are integrals of the billiard map. The frequency map λω\lambda \mapsto \omega is a key tool to understand the structure of periodic billiard trajectories. In principle, it is well-defined only for nonsingular values of the caustic parameters. We present four conjectures, fully supported by numerical experiments. The last one gives rise to some lower bounds on the periods. These bounds only depend on the type of the caustics. We describe the geometric meaning, domain, and range of ω\omega. The map ω\omega can be continuously extended to singular values of the caustic parameters, although it becomes "exponentially sharp" at some of them. Finally, we study triaxial ellipsoids of \Rset^3. We compute numerically the bifurcation curves in the parameter space on which the Liouville tori with a fixed frequency disappear. We determine which ellipsoids have more periodic trajectories. We check that the previous lower bounds on the periods are optimal, by displaying periodic trajectories with periods four, five, and six whose caustics have the right types. We also give some new insights for ellipses of \Rset^2.Comment: 50 pages, 13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions