13 research outputs found

    CD14(+) monocytes contribute to inflammation in chronic nonbacterial osteomyelitis (CNO) through increased NLRP3 inflammasome expression

    Get PDF
    The pathophysiology of chronic nonbacterial osteomyelitis (CNO) remains incompletely understood. Increased NLRP3 inflammasome activation and IL-1β release in monocytes from CNO patients was suggested to contribute to bone inflammation. Here, we dissect immune cell infiltrates and demonstrate the involvement of monocytes across disease stages. Differences in cell density and immune cell composition may help to discriminate between BOM and CNO. However, differences are subtle and infiltrates vary in CNO. In contrast to other cells involved, monocytes are a stable element during all stages of CNO, which makes them a promising candidate in the search for “drivers” of inflammation. Furthermore, we link increased expression of inflammasome components NLRP3 and ASC in monocytes with site-specific DNA hypomethylation around the corresponding genes NLRP3 and PYCARD. Our observations deliver further evidence for the involvement of pro-inflammatory monocytes in the pathophysiology of CNO. Cellular and molecular alterations may serve as disease biomarkers and/or therapeutic targets

    Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO)

    Get PDF
    Sterile bone inflammation is the hallmark of autoinflammatory bone disorders, including chronic nonbacterial osteomyelitis (CNO) with its most severe form chronic recurrent multifocal osteomyelitis (CRMO). Autoinflammatory osteopathies are the result of a dysregulated innate immune system, resulting in immune cell infiltration of the bone and subsequent osteoclast differentiation and activation. Interestingly, autoinflammatory bone disorders are associated with inflammation of the skin and/or the intestine. In several monogenic autoinflammatory bone disorders mutations in disease-causing genes have been reported. However, regardless of recent developments, the molecular pathogenesis of CNO/CRMO remains unclear. Here, we discuss the clinical presentation and molecular pathophysiology of human autoinflammatory osteopathies and animal models with special focus on CNO/CRMO. Treatment options in monogenic autoinflammatory bone disorders and CRMO will be illustrated

    Eine therapieresistente Oberlidschwellung im Kindesalter

    No full text

    Eine therapieresistente Oberlidschwellung im Kindesalter

    No full text
    J. R. Studt's Twist - TW28 - photographed 6 April 1980
    corecore