64 research outputs found

    Effects of arginine and ornithine supplementation to a high‐protein diet on selected cellular immune variables in adult cats

    Get PDF
    Background: Dietary protein and amino acid intake and composition can modulate immune function. Objectives: To evaluate the effects of high‐protein intake and arginine and ornithine supplementation on feline immune cells. Animals: Ten healthy cats. Methods: Experimental study. Cats received a high‐protein basal diet as a single daily meal. A crossover design was applied with treatments being basal diet (w/o); basal diet with arginine supplementation (+50, 75, 100% compared to the arginine provision by the basal diet; Arg 1‐3); and basal diet with ornithine supplementation (+100, 150, 200% compared to the arginine provision by the basal diet; Orn 1‐3). Blood samples were collected at the end of each 11‐day treatment period. Results: Mitogen‐stimulated proliferative activity of blood leukocytes revealed a quadratic effect for the dietary supplementation of arginine (P = .02) and ornithine (P = .03) (means for ConA‐stimulation: w/o = 6.96; Arg 1 = 9.31; Arg 2 = 11.4; Arg 3 = 8.04; Orn 1 = 15.4; Orn 2 = 9.43; Orn 3 = 9.28; pooled SEM: 0.96). The number (% gated) of phagocytic granulocytes linearly decreased with increasing dietary concentrations of arginine (P = .05) and ornithine (P = .03) (means: w/o = 95.5; Arg 1 = 93.0; Arg 2 = 92.5; Arg 3 = 92.6; Orn 1 = 92.6; Orn 2 = 92.6; Orn 3 = 91.5; pooled SEM = 0.44). Conclusions and Clinical Importance: This study could demonstrate immunomodulating properties of dietary arginine and ornithine in cats

    Effects of Dietary Arginine, Ornithine, and Zeolite Supplementation on Uremic Toxins in Cats

    Get PDF
    To test if arginine and ornithine, both components of the Krebs-Henseleit cycle, or zeolite, a potential ammonium absorber, can modulate the excretion of harmful bacterial metabolites, intestinal microbial protein fermentation was stimulated by feeding a high-protein (60.3%) diet as a single daily meal to 10 adult cats. The diet was supplemented without or with arginine (+50, 75, 100% compared to arginine in the basal diet), ornithine (+100, 150, 200% compared to arginine in the basal diet), or zeolite (0.125, 0.25, 0.375 g/kg body weight/day). The cats received each diet for 11 days. Urine, feces, and blood were collected during the last 4 days. Arginine and ornithine enhanced the postprandial increase of blood urea, but renal urea excretion was not increased. Zeolite decreased renal ammonium excretion and fecal biogenic amines. The data indicate an increased detoxification rate of ammonia by arginine and ornithine supplementation. However, as urea was not increasingly excreted, detrimental effects on renal function cannot be excluded. Zeolite had beneficial effects on the intestinal nitrogen metabolism, which should be further evaluated in diseased cats. Clinical studies should investigate whether dietary arginine and ornithine might improve hepatic ammonia detoxification or could be detrimental for renal function

    Dietary inulin affects the intestinal microbiota in sows and their suckling piglets

    Get PDF
    Background: Several studies have focused on the effects of dietary inulin on the intestinal microbiota of weaned piglets. In the present study, inulin was added to a diet for gestating and lactating sows, expecting not only effects on the faecal microbiota of sows, but also on the bacterial cell numbers in the gastrointestinal tract of their piglets during the suckling period. Sows were fed a diet without (n = 11) or with (n = 10) 3% inulin, and selected bacterial groups were determined in their faeces ante and post partum. Suckling piglets, 8 per group, were euthanised on day 10 after birth to analyse digesta samples of the gastrointestinal tract. Results: Dietary inulin increased the cell numbers of enterococci, both, in the faeces of the sows during gestation and lactation, and in the caecum of the piglets (P ≤ 0.05). Moreover, higher cell numbers of eubacteria (stomach) and C. leptum (caecum), but lower cell numbers of enterobacteria and L. amylovorus (stomach) were detected in the digesta of the piglets in the inulin group (P ≤ 0.05). Conclusions: In conclusion, inulin seems to have the potential to influence the gastrointestinal microbiota of suckling piglets through the diet of their mother, showing the importance of the mother-piglet couple for the microbial development. Early modulation of the intestinal microbiota could be especially interesting with regard to the critical weaning time

    Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats

    Get PDF
    Feline diets can markedly differ in their protein concentration and quality, which might also affect the intestinal microbiota of cats. In the present study, 6 canned diets, differing in their protein quality (high/low, achieved by varying amounts of meat and collagen-rich ingredients) and concentration (high quality/low quality: 36.2/36.7% in dry matter (DM), 43.3/45.0% in DM and 54.9/56.1% in DM), were fed to 10 healthy adult cats for 6 weeks each. At the end of the feeding periods, fecal samples were collected to analyze the microbiota (16S rDNA sequencing) and bacterial metabolites. Increasing dietary protein concentrations increased the relative abundance of Fusobacterium and Bacteroides as well as the concentrations of ammonium and n-valerate in the feces of the cats, independently of the dietary protein quality. A lower dietary protein quality was accompanied by a higher evenness index and a higher relative abundance of Fusobacteria and Bacteroidetes in the feces when compared to the feeding of the high protein quality diets. A promotion of bacterial proteolytic activity and, in particular, increased intestinal ammonium concentrations might be undesired effects of high protein intakes in cats. Whether the long-term feeding of those diets could be critical for feline health requires further investigation

    Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats

    Get PDF
    The role of dietary protein for the development of feline calcium oxalate (CaOx) uroliths has not been conclusively clarified. The present study evaluated the effects of a varying dietary protein concentration and quality on critical indices for the formation of CaOx uroliths. Three diets with a high protein quality (10–11 % greaves meal/diet) and a varying crude protein (CP) concentration (35, 44 and 57 % in DM) were compared. Additionally, the 57 % CP diet was compared with a fourth diet that had a similar CP concentration (55 % in DM), but a lower protein quality (34 % greaves meal/diet). The Ca and oxalate (Ox) concentrations were similar in all diets. A group of eight cats received the same diet at the same time. Each feeding period was divided into a 21 d adaptation period and a 7 d sampling period to collect urine. There were increases in urinary volume, urinary Ca concentrations, renal Ca and Ox excretion and urinary relative supersaturation (RSS) with CaOx with increasing dietary protein concentrations. Urinary pH ranged between 6·34 and 6·66 among all groups, with no unidirectional effect of dietary protein. Lower renal Ca excretion was observed when feeding the diet with the lower protein quality, however, the underlying mechanism needs further evaluation. In conclusion, although the observed higher urinary volume is beneficial, the increase in urinary Ca concentrations, renal Ca and Ox excretion and urinary RSS CaOx associated with a high-protein diet may be critical for the development of CaOx uroliths in cats

    Transformation of Hotel Food Waste into Animal Feed: Two Operational Periods of the Food for Feed Pilot Unit

    Get PDF
    Food waste represents 25–35% of the European Municipal Solid Waste (MSW), thus its diversion into innovative utilization streams is critical for sustainable waste management and the achievement of circularity. Opportunities are even higher in the island of Crete, Greece, where landfilled food waste is 39% of MSW. In this context, the LIFE-F4F Project implements a pilot scale modified solar drying process that provides an innovative, low-tech and low emissions method for safe transformation of source separated food waste into animal feed

    Effects of dietary cellobiose on the intestinal microbiota and excretion of nitrogen metabolites in healthy adult dogs

    Get PDF
    In order to evaluate the potential prebiotic effects of cellobiose, 10 healthy adult research beagle dogs received a complete diet containing 0, 0.5 and 1 g cellobiose/kg bodyweight (BW)/day. At the end of each feeding period, faeces, urine and blood of the dogs were collected. The results demonstrated a significant increase of faecal lactate concentrations, indicating a bacterial fermentation of cellobiose in the canine intestine. Along with this, a dose-dependent linear increase of the relative abundance of Lactobacillaceae in the faeces of the dogs was observed (p = 0.014). In addition, a dose-dependent increase (p < 0.05) of Alloprevotella, Bacteroides and Prevotella, and a linear decrease for unidentified Lachnospiraceae (p = 0.011) was observed when cellobiose was added to the diet, although the relative abundance of these genera was low (<1%) among all groups. The faecal pH was not affected by dietary cellobiose. Cellobiose seemed to modulate the excretion of nitrogen metabolites, as lower concentrations of phenol (p = 0.034) and 4-ethylphenol (p = 0.002) in the plasma of the dogs were measured during the supplementation periods. Urinary phenols and indoles, however, were not affected by the dietary supplementation of cellobiose. In conclusion, cellobiose seems to be fermented by the intestinal microbiota of dogs. Although no effect on the faecal pH was detected, the observed increase of microbial lactate production might lower the pH in the large intestine and consecutively modulate the intestinal absorption of nitrogen metabolites. Also, the observed changes of some bacterial genera might have been mediated by increased intestinal lactate concentrations or a higher relative abundance of lactobacilli. Whether these results could be considered as a prebiotic effect and used as a dietetic strategy in diseased animals to improve gut function or hepatic and renal nitrogen metabolism should be evaluated in future studies

    A Pilot Study on the Urine Proteome of Cats Fed a High-Protein Complete Diet, Supplemented with or without Arginine, Ornithine or Zeolite

    Get PDF
    Proteome analyses can be used to detect biomarkers for the healthy and diseased organism. However, data in cats are scarce, and no information is available on the potential impact of nutritional interventions on the feline urine proteome. In the present study, a label-free shotgun proteomics approach was performed to investigate the urinary proteins of four healthy adult cats. Each animal received a high-protein complete diet without (w/o) or with supplements that could affect the protein metabolism: arginine (+100% compared to the arginine concentration in the w/o diet), ornithine (+200% compared to the arginine concentration in the w/o diet) or zeolite (0.375 g/kg body weight/day). Our results demonstrate a huge number of proteins in the urine of cats (516 ± 49, 512 ± 39, 399 ± 149 and 455 ± 134 in the w/o, arginine, ornithine and zeolite group, respectively), which are associated with several biological processes. In addition, up- and downregulated urinary proteins could be detected in the dietary supplementation periods. Overall, the present pilot study provides basic data on the urine proteome of healthy adult cats. With increasing information, the numerousness of urinary proteins implies the potential to identify biomarkers and metabolic pathways in the feline organism

    Zinc Status of Horses and Ponies: Relevance of Health, Horse Type, Sex, Age, and Test Material

    Get PDF
    Little is known about the animal- and diet-related factors that could interfere with the plasma zinc (Zn) concentrations of equines. Additionally, the adequacy of plasma to reflect changes in the Zn intake is unclear. In the first part of this study, the plasma Zn concentrations of hospitalized horses and ponies (n = 538) were measured and evaluated for the impact of the age, sex, horse type, and internal diseases of the animals. In the second part, the effects of increasing dietary Zn chloride hydroxide and Zn methionine supplementations were assessed on the plasma and mane hair Zn concentrations of healthy horses (n = 2) and ponies (n = 8). Part 1: The age, sex, and horse type did not influence the plasma Zn concentrations. No effect of internal diseases was observed, with the exception of higher plasma Zn concentrations in animals with metabolic disorders compared to the control group (p < 0.05). Part 2: Both Zn supplements dose-dependently increased the Zn concentrations in the mane hair (p = 0.003), but not in the plasma of the horses and ponies. In conclusion, the plasma Zn concentrations were widely unaffected by nutritional and non-nutritional factors in equines, while mane hair samples better reflected the dietary Zn supply

    Liver and kidney concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in cats

    Get PDF
    Background In order to provide new knowledge on the storage of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) in the feline organism, we measured the concentrations of these elements in the liver, renal cortex and renal medulla, evaluating also the impact of age, sex or the occurrence of a chronic kidney disease (CKD). The element concentrations in the tissues of 47 cats (22 male; 25 female; aged between 2 months and 18 years) were measured using inductively coupled plasma mass spectrometry. Results Cu, Zn and Mn were the highest in the liver, followed by the renal cortex and the renal medulla. The Cd concentrations were lower in the renal medulla compared to the renal cortex and the liver, and Sr was higher in the renal medulla compared to the liver. The Se concentrations in the cortex of the kidneys were higher than in the medulla of the kidneys and in the liver. Higher Cd concentrations were measured in the renal cortex of female cats, while no further gender-related differences were observed. Except for Cr, Sb and Se, age-dependencies were detected for the storage of all elements. The occurrence of a CKD also affected the storage of the elements, with lower concentrations of Ba (renal medulla), Zn (renal cortex; renal medulla) and Mn (liver; renal medulla), but higher Cd concentrations (liver; renal cortex) in diseased cats. Conclusions In conclusion, the present results provide new information on the accumulation of specific elements in the feline liver and kidneys, demonstrating a dependency on age and an impaired kidney function, but not on the sex of the animals
    corecore