2,339 research outputs found
A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: Hipparcos-Tycho cool stars
The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is
indicative of very energetic, transient phenomena, associated with energy
release via magnetic reconnection. We present a uniform, large-scale survey of
X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its
associated data products provide an excellent basis for a comprehensive and
sensitive survey of stellar flares - both from targeted active stars and from
those observed serendipitously in the half-degree diameter field-of-view of
each observation. The 2XMM Catalogue and the associated time-series
(`light-curve') data products have been used as the basis for a survey of X-ray
flares from cool stars in the Hipparcos Tycho-2 catalogue. In addition, we have
generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray
light-curves. Where available, we have compared XMM OM UV/optical data with the
X-ray light-curves. Our sample contains ~130 flares with well-observed
profiles; they originate from ~70 stars. The flares range in duration from ~1e3
to ~1e4 s, have peak X-ray fluxes from ~1e-13 to ~1e-11 erg/cm2/s, peak X-ray
luminosities from ~1e29 to ~1e32 erg/s, and X-ray energy output from ~1e32 to
~1e35 erg. Most of the ~30 serendipitously-observed stars have little
previously reported information. The hardness-ratio plots clearly illustrate
the spectral (and hence inferred temperature) variations characteristic of many
flares, and provide an easily accessible overview of the data. We present flare
frequency distributions from both target and serendipitous observations. The
latter provide an unbiased (with respect to stellar activity) study of flare
energetics; in addition, they allow us to predict numbers of stellar flares
that may be detected in future X-ray wide-field surveys. The serendipitous
sample demonstrates the need for care when calculating flaring rates.Comment: 26 pages, 24 figures. Additional tables and figures available as 4
ancillary files. To be published in Astronomy and Astrophysic
BIRMINGHAM (Reino Unido). Planos de población (1792)
Orientado con lis en cuadrante de orientaciónToponimia de las principales calles y plazas de la ciudadTÃtulo incluÃdo en muro, sobre el cual se apoya una figura mitológica femeninaForma parte de la Colección Mendoz
Improving deep decarbonization modelling capacity for developed and developing country contexts
Energy models are essential for the development of national or regional deep decarbonization pathways (DDPs), providing the necessary analytical framework to systematically explore the system transitions that are required. However, this is challenging due to the long time horizon, the numerous data requirements and the need for transparent, credible approaches that can provide insights into complex transitions. This article explores how this challenge has been met to date, based on a review of the literature and the experiences of practitioners, drawing in particular on the Deep Decarbonization Pathways Project (DDPP), a collaborative effort by 16 national modelling teams. The article finds that there are a range of modelling approaches that have been used across different country contexts, chosen for different reasons, with recognized strengths and weaknesses. The key motivations for use of a given approach include being fit-for-purpose, having in-country capacity and the intertwined goals of transparency, communicability and policy credibility. From the review, a conceptual decision framework for DDP analysis is proposed. This three step process incorporates policy priorities, national characteristics and the model-agnostic principles that drive model choices, considering the needs and capabilities of developed and developing countries, and subject to data and analytical practicalities. Finally an agenda for the further development of modelling approaches is proposed, which is vital for strengthening capacity. These include a focus on model linking, incorporating behaviour and policy impacts, the flexibility to handle distinctive energy systems, incorporating wider environmental constraints and the development of entry-level tools. The latter three are critical for application in developing countries. Policy relevance Following the Paris Agreement, it is essential that modelling approaches are available to enable governments to plan how to decarbonize their economies in the long term. This article takes stock of current practices, identifies the strengths and weaknesses of existing approaches and proposes how capacity can be strengthened. It also provides some practical guidance on the process of choosing modelling approaches, given national priorities and circumstances. This is particularly relevant as countries revisit their Nationally Determined Contributions to meet the global objective of remaining well below a 2°C average global temperature increase
Use of apomorphine in Parkinsonian patients with neuropsychiatric complications to oral treatment
Neuropsychiatric side effects often complicate anti-Parkinsonian therapy and pose a significant problem in the optimal management of idiopathic Parkinson's disease. Several publications report a relative lack of neuropsychiatric side effects in Parkinsonian patients treated with subcutaneous apomorphine. To investigate this further, we have used subcutaneous apomorphine to treat 12 non-demented IPD patients with previous oral drug-related neuropsychiatric problems. Treatment with apomorphine allowed alteration of anti-Parkinsonian medication and led to the abolition or reduction of neuropsychiatric complications in all patients. The mechanism remains unclear but may be due, in part, to a reduction in oral medication or a psychotropic action of apomorphine, possibly due to the piperidine moiety in its structure, or both
Geometrical Shape Optimization of a Cavity Receiver Using Coupled Radiative and Hydrodynamic Modeling
AbstractBy using a two-stage optimisation process we maximise the heat rate output of afour-parameter axisymmetric direct steam generation cavity receiver. The model includes radiative and hydrodynamic considerations. We show that a significant range of geometrical shapes show similar efficiencies while having different wall flux and temperature profiles
- …