98 research outputs found

    The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    Get PDF
    Dengue/dengue hemorrhagic fever is the world's most widely spread mosquito-borne arboviral disease and threatens more than two-thirds of the world's population. Cases are mainly distributed in tropical and subtropical areas in accordance with vector habitats for Aedes aegypti and Ae. albopictus. However, the role of imported cases and favorable meteorological conditions has not yet been quantitatively assessed. This study verified the correlation between the occurrence of indigenous dengue and imported cases in the context of weather variables (temperature, rainfall, relative humidity, etc.) for different time lags in southern Taiwan. Our findings imply that imported cases have a role in igniting indigenous outbreaks, in non-endemics areas, when favorable weather conditions are present. This relationship becomes insignificant in the late phase of local dengue epidemics. Therefore, early detection and case management of imported cases through timely surveillance and rapid laboratory-diagnosis may avert large scale epidemics of dengue/dengue hemorrhagic fever. An early-warning surveillance system integrating meteorological data will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries

    Interaction of SET domains with histones and nucleic acid structures in active chromatin

    Get PDF
    Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modificationsβ€”the inheritable β€œhistone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the β€œSET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions

    E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    Get PDF
    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional Ξ²-catenin pool that is able to induce Ξ²-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous Ξ²-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of Ξ²-catenin/TCF transactivation

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsβ€”the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57Β·8% (95% CI 56Β·6–58Β·8) of global deaths and 41Β·2% (39Β·8–42Β·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211Β·8 million [192Β·7 million to 231Β·1 million] global DALYs), smoking (148Β·6 million [134Β·2 million to 163Β·1 million]), high fasting plasma glucose (143Β·1 million [125Β·1 million to 163Β·5 million]), high BMI (120Β·1 million [83Β·8 million to 158Β·4 million]), childhood undernutrition (113Β·3 million [103Β·9 million to 123Β·4 million]), ambient particulate matter (103Β·1 million [90Β·8 million to 115Β·1 million]), high total cholesterol (88Β·7 million [74Β·6 million to 105Β·7 million]), household air pollution (85Β·6 million [66Β·7 million to 106Β·1 million]), alcohol use (85Β·0 million [77Β·2 million to 93Β·0 million]), and diets high in sodium (83Β·0 million [49Β·3 million to 127Β·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT

    Get PDF
    Chromatin has a tendency to shift from a relatively decondensed (active) to condensed (inactive) state during cell differentiation due to interactions of specific architectural and/or regulatory proteins with DNA. A promotion of chromatin folding in terminally differentiated avian blood cells requires the presence of either histone H5 in erythrocytes or non-histone protein, myeloid and erythroid nuclear termination stage-specific protein (MENT), in white blood cells (lymphocytes and granulocytes). These highly abundant proteins assist in folding of nucleosome arrays and self-association of chromatin fibers into compacted chromatin structures. Here, we briefly review structural aspects and molecular mode of action by which these unrelated proteins can spread condensed chromatin to form inactivated regions in the genome

    E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells

    Get PDF
    We have recently shown that expression of the cell adhesion molecule E-cadherin is required for LIF-dependent pluripotency of mouse embryonic stem (ES) cells.In this study, we have assessed global transcript expression in E-cadherin null (Ecad-/-) ES cells cultured in either the presence or absence of LIF and compared these to the parental cell line wtD3.We show that LIF has little effect on the transcript profile of Ecad-/- ES cells, with statistically significant transcript alterations observed only for Sp8 and Stat3. Comparison of Ecad-/- and wtD3 ES cells cultured in LIF demonstrated significant alterations in the transcript profile, with effects not only confined to cell adhesion and motility but also affecting, for example, primary metabolic processes, catabolism and genes associated with apoptosis. Ecad-/- ES cells share similar, although not identical, gene expression profiles to epiblast-derived pluripotent stem cells, suggesting that E-cadherin expression may inhibit inner cell mass to epiblast transition. We further show that Ecad-/- ES cells maintain a functional Ξ²-catenin pool that is able to induce Ξ²-catenin/TCF-mediated transactivation but, contrary to previous findings, do not display endogenous Ξ²-catenin/TCF-mediated transactivation. We conclude that loss of E-cadherin in mouse ES cells leads to significant transcript alterations independently of Ξ²-catenin/TCF transactivation

    High-risk human papillomavirus infections in breast cancer in Syrian women and their association with Id-1 expression: a tissue microarray study

    Get PDF
    High-risk human papillomaviruses (HPVs) could be important risk factors for breast carcinogenesis and metastasis. Based on this hypothesis, we recently studied the effect of E6/E7 onco-proteins of high-risk HPV type 16 in two non-invasive human breast cancer cell lines, BT20 and MCF7; we reported that E6/E7 converts these cell lines to invasive cells. This is accompanied by an overexpression of Id-1, which is an important regulator of breast metastasis. In this investigation, we examined the presence of high-risk HPVs (16, 18, 31, 33 and 35) and the expression of their E6 onco-protein as well as their correlation with Id-1 gene expression, using polymerase chain reaction (PCR) and tissue microarray (TMA) analysis, respectively, in a cohort of 113 Syrian breast cancer patients. We found that high-risk HPV types 16, 18, 31, 33 and 35 are present in 8.84, 9.73, 7.07, 55.75 and 37.16% of our samples, respectively, which represent invasive breast cancers. Overall, 69 (61.06%) of the 113 samples are HPV positive; among these specimens 24 tissues (34.78%) are coinfected with more than one HPV type. Furthermore, we report that the expression of the E6 onco-protein of these high-risk HPVs is correlated with Id-1 overexpression in the majority of invasive breast cancer tissue samples. Our data suggest that high-risk HPV infections are associated with human breast cancer progression in Syrian women

    Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid use has prolonged ambulation in Duchenne muscular dystrophy (DMD) and combined with advances in respiratory care overall management has improved such that cardiac manifestations have become the major cause of death. Unfortunately, there is no consensus for DMD-associated cardiac disease management. Our purpose was to assess effects of steroid use alone or in combination with angiotensin converting enzyme inhibitors (ACEI) or angiotension receptor blocker (ARB) on cardiovascular magnetic resonance (CMR) derived circumferential strain (Ξ΅<sub>cc</sub>).</p> <p>Methods</p> <p>We used CMR to assess effects of corticosteroids alone (Group A) or in combination with ACEI or ARB (Group B) on heart rate (HR), left ventricular ejection fraction (LVEF), mass (LVM), end diastolic volume (LVEDV) and circumferential strain (Ξ΅<sub>cc</sub>) in a cohort of 171 DMD patients >5 years of age. Treatment decisions were made independently by physicians at both our institution and referral centers and not based on CMR results.</p> <p>Results</p> <p>Patients in Group A (114 studies) were younger than those in Group B (92 studies)(10 Β± 2.4 vs. 12.4 Β± 3.2 years, p < 0.0001), but HR, LVEF, LVEDV and LVM were not different. Although Ξ΅<sub>cc </sub>magnitude was lower in Group B than Group A (-13.8 Β± 1.9 vs. -12.8 Β± 2.0, p = 0.0004), age correction using covariance analysis eliminated this effect. In a subset of patients who underwent serial CMR exams with an inter-study time of ~15 months, Ξ΅<sub>cc </sub>worsened regardless of treatment group.</p> <p>Conclusions</p> <p>These results support the need for prospective clinical trials to identify more effective treatment regimens for DMD associated cardiac disease.</p

    Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection

    Get PDF
    The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread
    • …
    corecore