142 research outputs found

    Garment patterns generating based on 3-D body scanning

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Platform-independent Secure Blockchain-Based Voting System

    Get PDF
    Cryptographic techniques are employed to ensure the security of voting systems in order to increase its wide adoption. However, in such electronic voting systems, the public bulletin board that is hosted by the third party for publishing and auditing the voting results should be trusted by all participants. Recently a number of blockchain-based solutions have been proposed to address this issue. However, these systems are impractical to use due to the limitations on the voter and candidate numbers supported, and their security framework, which highly depends on the underlying blockchain protocol and suffers from potential attacks (e.g., force-abstention attacks). To deal with two aforementioned issues, we propose a practical platform-independent secure and verifiable voting system that can be deployed on any blockchain that supports an execution of a smart contract. Verifiability is inherently provided by the underlying blockchain platform, whereas cryptographic techniques like Paillier encryption, proof-of-knowledge, and linkable ring signature are employed to provide a framework for system security and user-privacy that are independent from the security and privacy features of the blockchain platform. We analyse the correctness and coercion-resistance of our proposed voting system. We employ Hyperledger Fabric to deploy our voting system and analyse the performance of our deployed scheme numerically

    Distinct 'Immuno-Allertypes' of Disease and High Frequencies of Sensitisation in Non-Cystic-Fibrosis Bronchiectasis

    Get PDF
    Rationale: Allergic sensitization is associated with poor clinical outcomes in asthma, chronic obstructive pulmonary disease, and cystic fibrosis; however, its presence, frequency, and clinical significance in non–cystic fibrosis bronchiectasis remain unclear. Objectives: To determine the frequency and geographic variability that exists in a sensitization pattern to common and specific allergens, including house dust mite and fungi, and to correlate such patterns to airway immune-inflammatory status and clinical outcomes in bronchiectasis. Methods: Patients with bronchiectasis were recruited in Asia (Singapore and Malaysia) and the United Kingdom (Scotland) (n = 238), forming the Cohort of Asian and Matched European Bronchiectasis, which matched recruited patients on age, sex, and bronchiectasis severity. Specific IgE response against a range of common allergens was determined, combined with airway immune-inflammatory status and correlated to clinical outcomes. Clinically relevant patient clusters, based on sensitization pattern and airway immune profiles (“immunoallertypes”), were determined. Measurements and Main Results: A high frequency of sensitization to multiple allergens was detected in bronchiectasis, exceeding that in a comparator cohort with allergic rhinitis (n = 149). Sensitization was associated with poor clinical outcomes, including decreased pulmonary function and more severe disease. “Sensitized bronchiectasis” was classified into two immunoallertypes: one fungal driven and proinflammatory, the other house dust mite driven and chemokine dominant, with the former demonstrating poorer clinical outcome. Conclusions: Allergic sensitization occurs at high frequency in patients with bronchiectasis recruited from different global centers. Improving endophenotyping of sensitized bronchiectasis, a clinically significant state, and a “treatable trait” permits therapeutic intervention in appropriate patients, and may allow improved stratification in future bronchiectasis research and clinical trials.Ministry of Education (MOE)Ministry of Health (MOH)National Medical Research Council (NMRC)Published versionSupported by the Singapore Ministry of Health’s National Medical Research Council under its Transition Award NMRC/TA/0048/2016 (S.H.C.) and Changi General Hospital Research grant CHF2016.03-P (T.B.L.). The work performed at NUS was supported by the Singapore Ministry of Education Academic Research Fund, SIgN, and National Medical Research Council grants N-154-000-038-001, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, SIgN-06-006, SIgN-08-020, and NMRC/1150/2008 (F.T.C.); J.D.C. is supported by the GSK/British Lung Foundation Chair of Respiratory Research

    Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

    Get PDF
    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    A Viral Dynamic Model for Treatment Regimens with Direct-acting Antivirals for Chronic Hepatitis C Infection

    Get PDF
    We propose an integrative, mechanistic model that integrates in vitro virology data, pharmacokinetics, and viral response to a combination regimen of a direct-acting antiviral (telaprevir, an HCV NS3-4A protease inhibitor) and peginterferon alfa-2a/ribavirin (PR) in patients with genotype 1 chronic hepatitis C (CHC). This model, which was parameterized with on-treatment data from early phase clinical studies in treatment-naïve patients, prospectively predicted sustained virologic response (SVR) rates that were comparable to observed rates in subsequent clinical trials of regimens with different treatment durations in treatment-naïve and treatment-experienced populations. The model explains the clinically-observed responses, taking into account the IC50, fitness, and prevalence prior to treatment of viral resistant variants and patient diversity in treatment responses, which result in different eradication times of each variant. The proposed model provides a framework to optimize treatment strategies and to integrate multifaceted mechanistic information and give insight into novel CHC treatments that include direct-acting antiviral agents

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity

    Lunapark deficiency leads to an autosomal recessive neurodevelopmental phenotype with a degenerative course, epilepsy and distinct brain anomalies

    Get PDF
    LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor ('ear-of-the-lynx' sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the 'ear-of-the-lynx' sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction

    The Enteropathogenic E. coli (EPEC) Tir Effector Inhibits NF-κB Activity by Targeting TNFα Receptor-Associated Factors

    Get PDF
    Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function
    corecore