75 research outputs found

    Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis

    Get PDF
    Enzymatic discoloration (ED) of potato tubers was investigated in an attempt to unravel the underlying genetic factors. Both enzyme and substrate concentration have been reported to influence the degree of discoloration and as such this trait can be regarded as polygenic. The diploid mapping population C × E, consisting of 249 individuals, was assayed for the degree of ED and levels of chlorogenic acid and tyrosine. Using this data, Quantitative Trait Locus (QTL) analysis was performed. Three QTLs for ED have been found on parental chromosomes C3, C8, E1, and E8. For chlorogenic acid a QTL has been identified on C2 and for tyrosine levels, a QTL has been detected on C8. None of the QTLs overlap, indicating the absence of genetic correlations between these components underlying ED, in contrast to earlier reports in literature. An obvious candidate gene for the QTL for ED on Chromosome 8 is polyphenol oxidase (PPO), which was previously mapped on chromosome 8. With gene-specific primers for PPO gene POT32 a CAPS marker was developed. Three different alleles (POT32-1, -2, and -3) could be discriminated. The segregating POT32 alleles were used to map the POT32 CAPS marker and QTL analysis was redone, showing that POT32 coincides with the QTL peak. A clear correlation between allele combinations and degree of discoloration was observed. In addition, analysis of POT32 gene expression in a subset of genotypes indicated a correlation between the level of gene expression and allele composition. On average, genotypes having two copies of allele 1 had both the highest degree of discoloration as well as the highest level of POT32 gene expression

    Association of Glomerular Filtration Rate with High-Sensitivity Cardiac Troponin T in a Community-Based Population Study in Beijing

    Get PDF
    BACKGROUND: Reduced renal function is an independent risk factor for cardiovascular disease mortality, and persistently elevated cardiac troponin T (cTnT) is frequently observed in patients with end-stage renal disease. In the general population the relationship between renal function and cTnT levels may not be clear because of the low sensitivity of the assay. In this study, we investigated the level of cTnT using a highly sensitive assay (hs-cTnT) and evaluated the association of estimated glomerular filtration rate (eGFR) with detectable hs-cTnT levels in a community-based population. METHODS: The serum hs-cTnT levels were measured in 1365 community dwelling population aged ≥45 years in Beijing, China. eGFR was determined by the Chinese modifying modification of diet in renal disease (C-MDRD) equation. RESULTS: With the highly sensitive assay, cTnT levels were detectable (≥3pg/mL) in 744 subjects (54.5%). The result showed that eGFR was associated with Log hs-cTnT (r = -0.14, P<0.001). After adjustment for the high predicted Framingham Coronary Heart Disease (CHD) risk (10-year risk >20%) and other prognostic indicators, moderate to severe reduced eGFR was independently associated with detectable hs-cTnT, whereas normal to mildly reduced eGFR was not independently associated with detectable hs-cTnT. In addition, after adjustment for other risk factors, the high predicted Framingham CHD risk was associated with detectable hs-cTnT in the subjects with different quartile levels of eGFR. CONCLUSION: The levels of hs-cTnT are detectable in a community-based Chinese population and low eGFR is associated with detectable hs-cTnT. Moreover, eGFR and high predicted Framingham CHD risk are associated with detectable hs-cTnT in subjects with moderate-to-severe reduced renal function

    Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Get PDF
    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants

    Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells

    Get PDF
    Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors

    Relative survival and excess mortality following primary percutaneous coronary intervention for ST-elevation myocardial infarction

    Get PDF
    Background: High survival rates are commonly reported following primary percutaneous coronary intervention for ST-elevation myocardial infarction, with most contemporary studies reporting overall survival. Aims: The aim of this study was to describe survival following primary percutaneous coronary intervention for ST-elevation myocardial infarction corrected for non-cardiovascular deaths by reporting relative survival and investigate clinically significant factors associated with poor long-term outcomes. Methods and Results: Using the prospective UK Percutaneous Coronary Intervention registry, primary percutaneous coronary intervention cases (n=88,188; 2005–2013) were matched to mortality data for the UK populace. Crude five-year relative survival was 87.1% for the patients undergoing primary percutaneous coronary intervention and 94.7% for patients 75 years: 4.69, 4.27–5.16). After four years, there was no excess mortality for ages 56–65 years (excess mortality rate ratio 1.27, 0.95–1.70), but persisting excess mortality for older groups (66–75 years: excess mortality rate ratio 1.72, 1.30–2.27; >75 years: 1.66, 1.15–2.41). Excess mortality was associated with cardiogenic shock (excess mortality rate ratio 6.10, 5.72–6.50), renal failure (2.52, 2.27–2.81), left main stem stenosis (1.67, 1.54–1.81), diabetes (1.58, 1.47–1.69), previous myocardial infarction (1.52, 1.40–1.65) and female sex (1.33, 1.26–1.41); whereas stent deployment (0.46, 0.42–0.50) especially drug eluting stents (0.27, 0.45–0.55), radial access (0.70, 0.63–0.71) and previous percutaneous coronary intervention (0.67, 0.60–0.75) were protective. Conclusions: Following primary percutaneous coronary intervention for ST-elevation myocardial infarction, long-term cardiovascular survival is excellent. Failure to account for non-cardiovascular death may result in an underestimation of the efficacy of primary percutaneous coronary intervention
    • …
    corecore