89 research outputs found

    Shrinking and Splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide

    No full text
    International audienceClimate, and in particular **the spatial pattern of precipitation, is thought to affect* *the topographic and tectonic evolution of mountain belts through erosion. Numerical model simulations of landscape erosion controlled **by horizontal tectonic motion or orographic precipitation result in the asymmetric topography that characterizes most natural mountain belts, and in a continuous migration of the main drainage divide. The effects of such a migration have, however, been challenging to observe in natural settings. Here I document the effects of a lateral precipitation gradient on a landscape undergoing constant uplift in a laboratory modelling experiment. In the experiment, the drainage divide migrates towards the drier, leeward side of the mountain range, causing the drainage basins on the leeward side to shrink and split into* *smaller basins. This mechanism results in a progressively increasing number of drainage basins on the leeward side of the mountain range as the divide migrates, such that the expected relationship between the spacing of drainage basins and the location of the main drainage divide is maintained. I propose that this mechanism could clarify the drainage divide migration and topographic asymmetry found in active orogenic mountain ranges, as exemplified by the Aconquija Range of Argentin

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology

    Get PDF
    International audienceThe potential link between erosion rates at the Earth's surface and changes in global climate has intrigued geoscientists for decades1,2 because such a coupling has implications for the influence of silicate weathering3,4 and organic-carbon burial5 on climate and for the role of Quaternary glaciations in landscape evolution1,6. A global increase in late-Cenozoic erosion rates in response to a cooling, more variable climate has been proposed on the basis of worldwide sedimentation rates7. Other studies have indicated, however, that global erosion rates may have remained steady, suggesting that the reported increases in sediment-accumulation rates are due to preservation biases, depositional hiatuses and varying measurement intervals8-10. More recently, a global compilation of thermochronology data has been used to infer a nearly twofold increase in the erosion rate in mountainous landscapes over late-Cenozoic times6. It has been contended that this result is free of the biases that affect sedimentary records11, although others have argued that it contains biases related to how thermochronological data are averaged12 and to erosion hiatuses in glaciated landscapes13. Here we investigate the 30 locations with reported accelerated erosion during the late Cenozoic6. Our analysis shows that in 23 of these locations, the reported increases are a result of a spatial correlation bias—that is, combining data with disparate exhumation histories, thereby converting spatial erosion-rate variations into temporal increases. In four locations, the increases can be explained by changes in tectonic boundary conditions. In three cases, climatically induced accelerations are recorded, driven by localized glacial valley incision. Our findings suggest that thermochronology data currently have insufficient resolution to assess whether late-Cenozoic climate change affected erosion rates on a global scale. We suggest that a synthesis of local findings that include location-specific information may help to further investigate drivers of global erosion rates

    Mineralogy: Apatite afire

    No full text
    corecore