12 research outputs found

    Field Effectiveness of Pandemic and 2009-2010 Seasonal Vaccines against 2009-2010 A(H1N1) Influenza: Estimations from Surveillance Data in France

    Get PDF
    BACKGROUND: In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data. METHODOLOGY AND PRINCIPAL FINDINGS: We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30-69) during the pandemic and 33% (4-55) after. It was 86% (56-98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56-66) during the pandemic and 19% (-10-41) after. It was 60% (41-74) against confirmed influenza. CONCLUSIONS: The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias

    Cost of dengue outbreaks: literature review and country case studies.

    Get PDF
    BACKGROUND Dengue disease surveillance and vector surveillance are presumed to detect dengue outbreaks at an early stage and to save--through early response activities--resources, and reduce the social and economic impact of outbreaks on individuals, health systems and economies. The aim of this study is to unveil evidence on the cost of dengue outbreaks. METHODS Economic evidence on dengue outbreaks was gathered by conducting a literature review and collecting information on the costs of recent dengue outbreaks in 4 countries: Peru, Dominican Republic, Vietnam, and Indonesia. The literature review distinguished between costs of dengue illness including cost of dengue outbreaks, cost of interventions and cost-effectiveness of interventions. RESULTS Seventeen publications on cost of dengue showed a large range of costs from 0.2 Million USinVenezuelato135.2MillionUS in Venezuela to 135.2 Million US in Brazil. However, these figures were not standardized to make them comparable. Furthermore, dengue outbreak costs are calculated differently across the publications, and cost of dengue illness is used interchangeably with cost of dengue outbreaks. Only one paper from Australia analysed the resources saved through active dengue surveillance. Costs of vector control interventions have been reported in 4 studies, indicating that the costs of such interventions are lower than those of actual outbreaks. Nine papers focussed on the cost-effectiveness of dengue vaccines or dengue vector control; they do not provide any direct information on cost of dengue outbreaks, but their modelling methodologies could guide future research on cost-effectiveness of national surveillance systems.The country case studies--conducted in very different geographic and health system settings - unveiled rough estimates for 2011 outbreak costs of: 12 million USinVietnam,6.75millionUS in Vietnam, 6.75 million US in Indonesia, 4.5 million USinPeruand2.8millionUS in Peru and 2.8 million US in Dominican Republic (all in 2012 US$). The proportions of the different cost components (vector control; surveillance; information, education and communication; direct medical and indirect costs), as percentage of total costs, differed across the respective countries. Resources used for dengue disease control and treatment were country specific. CONCLUSIONS The evidence so far collected further confirms the methodological challenges in this field: 1) to define technically dengue outbreaks (what do we measure?) and 2) to measure accurately the costs in prospective field studies (how do we measure?). Currently, consensus on the technical definition of an outbreak is sought through the International Research Consortium on Dengue Risk Assessment, Management and Surveillance (IDAMS). Best practice guidelines should be further developed, also to improve the quality and comparability of cost study findings. Modelling the costs of dengue outbreaks and validating these models through field studies should guide further research
    corecore