51 research outputs found

    Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    Get PDF
    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only

    Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus

    Get PDF
    Background: A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence that supports a genetic basis for resistance to porcine reproductive and respiratory syndrome (PRRS), it is not known whether pigs also differ genetically in tolerance. We determined to what extent pigs that have been shown to vary genetically in resistance to PRRS also exhibit genetic variation in tolerance. Multi-trait linear mixed models and random regression sire models were fitted to PRRS Host Genetics Consortium data from 1320 weaned pigs (offspring of 54 sires) that were experimentally infected with a virulent strain of PRRS virus to obtain genetic parameter estimates for resistance and tolerance. Resistance was defined as the inverse of within-host viral load (VL) from 0 to 21 (VL21) or 0 to 42 (VL42) days post-infection and tolerance as the slope of the reaction-norm of average daily gain (ADG21, ADG42) on VL21 or VL42. Results: Multi-trait analysis of ADG associated with either low or high VL was not indicative of genetic variation in tolerance. Similarly, random regression models for ADG21 and ADG42 with a tolerance slope fitted for each sire did not result in a better fit to the data than a model without genetic variation in tolerance. However, the distribution of data around average VL suggested possible confounding between level and slope estimates of the regression lines. Augmenting the data with simulated growth rates of non-infected half-sibs (ADG0) helped resolve this statistical confounding and indicated that genetic variation in tolerance to PRRS may exist if genetic correlations between ADG0 and ADG21 or ADG42 are low to moderate. Conclusions: Evidence for genetic variation in tolerance of pigs to PRRS was weak when based on data from infected piglets only. However, simulations indicated that genetic variance in tolerance may exist and could be detected if comparable data on uninfected relatives were available. In conclusion, of the two defense strategies, genetics of tolerance is more difficult to elucidate than genetics of resistance.</p

    Unravelling the relationship between animal growth and immune response during micro-parasitic infections

    Get PDF
    Background: Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone. Methodology/Principal Findings: Here, a mathematical model is proposed to explore the hypothesis that a host's response to pathogen challenge largely depends on the interaction between a host's genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal's ability to cope with pathogens and greater resistance may reduce growth in the short-term. Significance: Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response. © 2009 Doeschl-Wilson et al

    Immunity Traits in Pigs: Substantial Genetic Variation and Limited Covariation

    Get PDF
    BACKGROUND: Increasing robustness via improvement of resistance to pathogens is a major selection objective in livestock breeding. As resistance traits are difficult or impossible to measure directly, potential indirect criteria are measures of immune traits (ITs). Our underlying hypothesis is that levels of ITs with no focus on specific pathogens define an individual's immunocompetence and thus predict response to pathogens in general. Since variation in ITs depends on genetic, environmental and probably epigenetic factors, our aim was to estimate the relative importance of genetics. In this report, we present a large genetic survey of innate and adaptive ITs in pig families bred in the same environment. METHODOLOGY/PRINCIPAL FINDINGS: Fifty four ITs were studied on 443 Large White pigs vaccinated against Mycoplasma hyopneumoniae and analyzed by combining a principal component analysis (PCA) and genetic parameter estimation. ITs include specific and non specific antibodies, seric inflammatory proteins, cell subsets by hemogram and flow cytometry, ex vivo production of cytokines (IFNα, TNFα, IL6, IL8, IL12, IFNγ, IL2, IL4, IL10), phagocytosis and lymphocyte proliferation. While six ITs had heritabilities that were weak or not significantly different from zero, 18 and 30 ITs had moderate (0.1<h2≤0.4) or high (h2>0.4) heritability values, respectively. Phenotypic and genetic correlations between ITs were weak except for a few traits that mostly include cell subsets. PCA revealed no cluster of innate or adaptive ITs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that variation in many innate and adaptive ITs is genetically controlled in swine, as already reported for a smaller number of traits by other laboratories. A limited redundancy of the traits was also observed confirming the high degree of complementarity between innate and adaptive ITs. Our data provide a genetic framework for choosing ITs to be included as selection criteria in multitrait selection programmes that aim to improve both production and health traits
    • …
    corecore