1,254 research outputs found
Comment on "Wandering minds: The default network and stimulus-independent thought"
Mason et al. (Reports, 19 January 2007, p. 393) attributed activity in certain regions of the "resting" brain to the occurrence of mind-wandering. However, previous research has demonstrated the difficulty of distinguishing this type of stimulus-independent thought from stimulus-oriented thought (e.g., watchfulness). Consideration of both possibilities is required to resolve this ambiguity
Detecting brute-force attacks on cryptocurrency wallets
Blockchain is a distributed ledger, which is protected against malicious
modifications by means of cryptographic tools, e.g. digital signatures and hash
functions. One of the most prominent applications of blockchains is
cryptocurrencies, such as Bitcoin. In this work, we consider a particular
attack on wallets for collecting assets in a cryptocurrency network based on
brute-force search attacks. Using Bitcoin as an example, we demonstrate that if
the attack is implemented successfully, a legitimate user is able to prove that
fact of this attack with a high probability. We also consider two options for
modification of existing cryptocurrency protocols for dealing with this type of
attacks. First, we discuss a modification that requires introducing changes in
the Bitcoin protocol and allows diminishing the motivation to attack wallets.
Second, an alternative option is the construction of special smart-contracts,
which reward the users for providing evidence of the brute-force attack. The
execution of this smart-contract can work as an automatic alarm that the
employed cryptographic mechanisms, and (particularly) hash functions, have an
evident vulnerability.Comment: 10 pages, 2 figures; published versio
A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.
Recent technological advances have allowed the development of portable functional Near-Infrared Spectroscopy (fNIRS) devices that can be used to perform neuroimaging in the real-world. However, as real-world experiments are designed to mimic everyday life situations, the identification of event onsets can be extremely challenging and time-consuming. Here, we present a novel analysis method based on the general linear model (GLM) least square fit analysis for the Automatic IDentification of functional Events (or AIDE) directly from real-world fNIRS neuroimaging data. In order to investigate the accuracy and feasibility of this method, as a proof-of-principle we applied the algorithm to (i) synthetic fNIRS data simulating both block-, event-related and mixed-design experiments and (ii) experimental fNIRS data recorded during a conventional lab-based task (involving maths). AIDE was able to recover functional events from simulated fNIRS data with an accuracy of 89%, 97% and 91% for the simulated block-, event-related and mixed-design experiments respectively. For the lab-based experiment, AIDE recovered more than the 66.7% of the functional events from the fNIRS experimental measured data. To illustrate the strength of this method, we then applied AIDE to fNIRS data recorded by a wearable system on one participant during a complex real-world prospective memory experiment conducted outside the lab. As part of the experiment, there were four and six events (actions where participants had to interact with a target) for the two different conditions respectively (condition 1: social-interact with a person; condition 2: non-social-interact with an object). AIDE managed to recover 3/4 events and 3/6 events for conditions 1 and 2 respectively. The identified functional events were then corresponded to behavioural data from the video recordings of the movements and actions of the participant. Our results suggest that "brain-first" rather than "behaviour-first" analysis is possible and that the present method can provide a novel solution to analyse real-world fNIRS data, filling the gap between real-life testing and functional neuroimaging
The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience
The past few decades have seen a rapid increase in the use of functional near‐infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state‐of‐the‐art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Axion Protection from Flavor
The QCD axion fails to solve the strong CP problem unless all explicit PQ
violating, Planck-suppressed, dimension n<10 operators are forbidden or have
exponentially small coefficients. We show that all theories with a QCD axion
contain an irreducible source of explicit PQ violation which is proportional to
the determinant of the Yukawa interaction matrix of colored fermions.
Generically, this contribution is of low operator dimension and will
drastically destabilize the axion potential, so its suppression is a necessary
condition for solving the strong CP problem. We propose a mechanism whereby the
PQ symmetry is kept exact up to n=12 with the help of the very same flavor
symmetries which generate the hierarchical quark masses and mixings of the SM.
This "axion flavor protection" is straightforwardly realized in theories which
employ radiative fermion mass generation and grand unification. A universal
feature of this construction is that the heavy quark Yukawa couplings are
generated at the PQ breaking scale.Comment: 16 pages, 2 figure
Environmental Health Disparities: A Framework Integrating Psychosocial and Environmental Concepts
Although it is often acknowledged that social and environmental factors interact to produce racial and ethnic environmental health disparities, it is still unclear how this occurs. Despite continued controversy, the environmental justice movement has provided some insight by suggesting that disadvantaged communities face greater likelihood of exposure to ambient hazards. The exposure–disease paradigm has long suggested that differential “vulnerability” may modify the effects of toxicants on biological systems. However, relatively little work has been done to specify whether racial and ethnic minorities may have greater vulnerability than do majority populations and, further, what these vulnerabilities may be. We suggest that psychosocial stress may be the vulnerability factor that links social conditions with environmental hazards. Psychosocial stress can lead to acute and chronic changes in the functioning of body systems (e.g., immune) and also lead directly to illness. In this article we present a multidisciplinary framework integrating these ideas. We also argue that residential segregation leads to differential experiences of community stress, exposure to pollutants, and access to community resources. When not counterbalanced by resources, stressors may lead to heightened vulnerability to environmental hazards
Prospective memory functioning among ecstasy/polydrug users: evidence from the Cambridge Prospective Memory Test (CAMPROMPT)
Rationale:
Prospective memory (PM) deficits in recreational drug users have been documented in recent years. However, the assessment of PM has largely been restricted to self-reported measures that fail to capture the distinction between event-based and time-based PM. The aim of the present study is to address this limitation.
Objectives:
Extending our previous research, we augmented the range laboratory measures of PM by employing the CAMPROMPT test battery to investigate the impact of illicit drug use on prospective remembering in a sample of cannabis only, ecstasy/polydrug and non-users of illicit drugs, separating event and time-based PM performance. We also administered measures of executive function and retrospective memory in order to establish whether ecstasy/polydrug deficits in PM were mediated by group differences in these processes.
Results:
Ecstasy/polydrug users performed significantly worse on both event and time-based prospective memory tasks in comparison to both cannabis only and non-user groups. Furthermore, it was found that across the whole sample, better retrospective memory and executive functioning was associated with superior PM performance. Nevertheless, this association did not mediate the drug-related effects that were observed. Consistent with our previous study, recreational use of cocaine was linked to PM deficits.
Conclusions:
PM deficits have again been found among ecstasy/polydrug users, which appear to be unrelated to group differences in executive function and retrospective memory. However, the possibility that these are attributable to cocaine use cannot be excluded
Recommended from our members
Physiological responses during ascent to high altitude and the incidence of acute mountain sickness.
Acute mountain sickness (AMS) occurs when there is failure of acclimatisation to high altitude. The aim of this study was to describe the relationship between physiological variables and the incidence of AMS during ascent to 5300 m. A total of 332 lowland-dwelling volunteers followed an identical ascent profile on staggered treks. Self-reported symptoms of AMS were recorded daily using the Lake Louise score (mild 3-4; moderate-severe ≥5), alongside measurements of physiological variables (heart rate, respiratory rate (RR), peripheral oxygen saturation (SpO2 ) and blood pressure) before and after a standardised Xtreme Everest Step-Test (XEST). The overall occurrence of AMS among participants was 73.5% (23.2% mild, 50.3% moderate-severe). There was no difference in gender, age, previous AMS, weight or body mass index between participants who developed AMS and those who did not. Participants who had not previously ascended >5000 m were more likely to get moderate-to-severe AMS. Participants who suffered moderate-to-severe AMS had a lower resting SpO2 at 3500 m (88.5 vs. 89.6%, p = 0.02), while participants who suffered mild or moderate-to-severe AMS had a lower end-exercise SpO2 at 3500 m (82.2 vs. 83.8%, p = 0.027; 81.5 vs. 83.8%, p 5000 m (OR 2.740, p-value 0.003) predicted the development of moderate-to-severe AMS. The Xtreme Everest Step-Test offers a simple, reproducible field test to help predict AMS, albeit with relatively limited predictive precision
- …