8 research outputs found

    [Morphology of collagen matrices for tissue engineering (biocompatibility, biodegradation, tissue response)]

    Full text link
    Objective: to perform a comparative morphological study of biocompatibility, biodegradation, and tissue response to implantation of collagen matrices (scaffolds) for tissue engineering in urology and other areas of medicine. Material and methods. Nine matrix types, such as porous materials reconstructed from collagen solution; a collagen sponge-vicryl mesh composite; decellularized and freeze-dried bovine, equine, and fish dermis; small intestinal submucosa, decellularized bovine dura mater; and decellularized human femoral artery, were implanted subcutaneously in 225 rats. The tissues at the implantation site were investigated for a period of 5 to 90 days. Classical histology and nonlinear optical microscopy (NLOM) were applied. Results. The investigations showed no rejection of all the collagen materials. The period of matrix bioresorption varied from 10 days for collagen sponges to 2 months for decellularized and freeze-dried vessels and vicryl meshes. Collagen was prone to macrophage resorption and enzymatic lysis, being replaced by granulation tissue and then fibrous tissue, followed by its involution. NLOM allowed the investigators to study the number, density, interposition, and spatial organization of collagen structures in the matrices and adjacent tissues, and their change over time during implantation. Conclusion. The performed investigation could recommend three matrices: hybrid collagen/vicryl composite; decellularized bovine dermis; and decellularized porcine small intestinal submucosa, which are most adequate for tissue engineering in urology. These and other collagen matrices may be used in different areas of regenerative medicine

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio

    Contemporary management of ureteral strictures

    No full text
    © 2018, British Association of Urological Surgeons 2018. Ureteral stricture disease is a luminal narrowing of the ureter leading to functional obstruction of the kidney. Treatment of strictures is mandatory to preserve and protect renal function. In recent times, the surgical management of ureteral strictures has evolved from open repair to include laparoscopic, robotic and interventional techniques. Prompt diagnosis and early first line intervention to limit obstructive complications remains the cornerstone of successful treatment. In this article, we discuss minimally invasive, endo-urological and open approaches to the repair of ureteral strictures. Open surgical repair and endoscopic techniques have traditionally been employed with varying degrees of success. The advent of laparoscopic and robotic approaches has reduced morbidity, improved cosmesis and shortened recovery time, with results that are beginning to mirror and in some cases surpass more traditional approaches. Level of evidence: Not applicable for this multicentre audit
    corecore