26 research outputs found

    The Association between Environmental Lead Exposure and Bone Density in Children

    Get PDF
    Osteoporosis is a decrease in bone mineral density (BMD) that predisposes individuals to fractures. Although an elderly affliction, a predisposition may develop during adolescence if a sufficient peak BMD is not achieved. Rat studies have found that lead exposure is associated with decreased BMD. However, human studies are limited. We hypothesized that the BMD of children with high lead exposure would be lower than the BMD of children with low lead exposure. We collected data on 35 subjects; 16 had low cumulative lead exposure (mean, 6.5 ÎŒg/dL), and 19 had high exposure (mean, 23.6 ÎŒg/dL). All were African American; there was no difference between the groups by sex, age, body mass index, socioeconomic status, physical activity, or calcium intake. Significant differences in BMD between low and high cumulative lead exposure were noted in the head (1.589 vs. 1.721 g/cm(2)), third lumbar vertebra (0.761 vs. 0.819 g/cm(2)), and fourth lumbar vertebra (0.712 vs. 0.789 g/cm(2)). Contrary to our hypothesis, subjects with high lead exposure had a significantly higher BMD than did subjects with low lead exposure. This may reflect a true phenomenon because lead exposure has been reported to accelerate bony maturation by inhibiting the effects of parathyroid hormone–related peptide. Accelerated maturation of bone may ultimately result in a lower peak BMD being achieved in young adulthood, thus predisposing to osteoporosis in later life. Future studies need to investigate this proposed model

    The Effect of Simvastatin on the Proliferation and Differentiation of Human Bone Marrow Stromal Cells

    Get PDF
    Statins have been postulated to affect the bone metabolism. Recent experimental and epidemiologic studies have suggested that statins may also have bone protective effects. This study assessed the effects of simvastatin on the proliferation and differentiation of human bone marrow stromal cells (BMSCs) in an ex vivo culture. The bone marrow was obtained from healthy donors. Mononuclear cells were isolated and cultured to osteoblastic lineage. In the primary culture, 10-6 M simvastatin diminished the mean size of the colony forming units-fibroblastic (CFU-Fs) and enhanced matrix calcification. At near confluence, the cells were sub-cultured. Thereafter, the alkaline phosphatase (ALP) activities of each group were measured by the time course of the secondary culture. Simvastatin increased the ALP activity in a dose dependent manner, and this stimulatory effect was more evident during the early period of culture. A 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay was performed during the secondary culture in order to estimate the effect of simvastatin on the proliferation of human BMSCs. When compared to the control group, simvastatin significantly decreased the proliferation of cells of each culture well. 10-6 M of simvastatin also significantly enhanced the osteocalcin mRNA expression level. This study shows that simvastatin has a stimulatory effect on bone formation through osteoblastic differentiation, and has an inhibitory effect on the proliferative potential of human BMSC

    Meningeal Osteosarcoma in a Dog

    No full text
    corecore