7 research outputs found
Comparison of Zero Inflated Poisson (ZIP) Regression, Zero Inflated Negative Binomial Regression (ZINB) and Binomial Negative Hurdle Regression (HNB) to Model Daily Cigarette Consumption Data for Adult Population in Indonesia
Smoking is a habit that is not good for health. Smoking habits are generally practiced by adults but it is possible for teenagers to do so.The Report of Southeast Asia Tobacco Control Alliance (SEATCA) entitled The Tobacco Control Atlas, ASEAN Region shows that Indonesia is the country with the highest number of smokers in ASEAN, namely 65.19 million people. This figure is equivalent to 34 percent of the total population of Indonesia in 2016. Based on these data, the authors are interested in modeling the daily cigarette consumption data for adults in Indonesia obtained from the 2015 Indonesia Family Life Survey. The variables used include the variable amount of cigarette consumption, education, level of welfare and income per month. The author wants to compare the best model that can be used to model the daily cigarette consumption of adults in Indonesia. The models being compared are Zero Inflated Poisson Regression (ZIP), Zero Inflated Negative Binomial Regression (ZINB) and Binomial Negative Hurdle Regression (HNB). The comparison results of the three models obtained that the best model is the Zero Inflated Negative Binomial (ZINB) Regression model because it has the smallest Akaike's Information Criterion (AIC) value
Peramalan Harga Emas Saat Pandemi Covid-19 Menggunakan Model Hybrid Autoregressive Integrated Moving Average - Support Vector Regression
ABSTRAKInvestasi emas merupakan salah satu investasi yang menjadi favorit dimasa pandemi Covid 19 seperti sekarang ini. Hal ini dikarenakan harga emas yang nilainya relatif fluktuatif tetapi menunjukkan tren peningkatan. Investor dituntut pandai dalam berinvestasi emas, mampu memprediksi peluang dimasa yang akan datang. Salah satu model peramalan data deret waktu adalah model Autoregressive Integrated Moving Average (ARIMA). Model ARIMA baik digunakan pada data yang berpola linear tetapi jika digunakan pada data data nonlinear keakuratannya menurun. Untuk mengatasi permasalahan data nonlinear dapat menggunakan model Support Vector Regression (SVR). Pengujian linearitas pada data harga emas menunjukkan adanya pola data linear dan nonlinear sekaligus sehingga digunakan kombinasi ARIMA dan SVR yaitu model hybrid ARIMA-SVR. Hasil peramalan menggunakan model hybrid ARIMA-SVR menunjukkan hasil lebih baik dibanding model ARIMA. Hal ini dibuktikan dengan nilai MAPE model hybrid ARIMA-SVR lebih kecil dibandingkan nilai MAPE model ARIMA. Nilai MAPE model hybrid ARIMA-SVR sebesar 0,355 pada data training dan 4,001 pada data testing, sedangkan nilai MAPE model ARIMA sebesar 0,903 pada data training dan 4,076 pada data testing.ABSTRACTGold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data
PERBANDINGAN REGRESI NONPARAMETRIK KERNEL DAN B-SPLINES PADA PEMODELAN RATA-RATA LAMA SEKOLAH DAN PENGELUARAN PERKAPITA DI INDONESIA
Analisis regresi merupakan salah satu alat statistik yang banyak digunakan untuk mengetahui hubungan antara dua variabel acak atau lebih. Metode penaksiran model regresi terbagi atas regresi parametrik dan nonparametrik. Penelitian ini bertujuan menganalisis pola hubungan pengeluaran perkapita terhadap rata-rata lama sekolah di Indonesia tahun 2018 melalui perbandingan regresi nonparametrik, yaitu regresi kernel dan spline. Regresi kernel yang digunakan adalah regresi kernel dengan metode penaksir Nadaraya-Watson (NWE), sedangkan regresi spline yang digunakan adalah B-Splines. Berdasarkan nilai Generalized Cross Validation (GCV) yang minimum dari model regresi B-Splines, digunakan model dengan degree 2. Perbandingan model terbaik antara model NWE dan B-Splines dilakukan berdasarkan nilai RMSE terkecil dan kurva yang dihasilkan. Pada penelitian ini, model yang terbaik adalah model B-Splines karena memiliki RMSE 0,705, lebih kecil dibandingkan NWE dengan RMSE 1,854. Selain itu, regresi B-Splines memiliki kurva yang halus dan mengikuti sebaran data dibandingkan kurva NWE
Analisis Komponen Utama Pada Data Potensi Kecamatan di Kota Palu Sebelum Bencana Gempa Bumi dan Tsunami 28 September 2018
Pada tanggal 28 September 2018 peristiwa gempa bumi berkekuatan 7,4 SR diikuti dengan tsunami melanda Kota Palu. Gempa bumi dan tsunami memakan ribuan korban jiwa, ribuan orang mengungsi, ribuan bangunan hancur dan kerusakan infrastruktur di Kota Palu. Selain itu, dampak bencana gempa bumi dan tsunami ini berpengaruh terhadap pembangunan Kota Palu. Pembangunan yang susah payah dibangun dan memerlukan waktu lama, tiba-tiba hancur seketika karena gempa bumi dan tsunami. Penelitian ini difokuskan pada potensi kecamatan di Kota Palu sebelum terjadi bencana gempa bumi dan tsunami. Adapun data yang digunakan berasal dari publikasi Kota Palu dalam angka 2018 yang diperoleh dari BPS Kota Palu. Variabel pada penelitian ini merupakan variabel yang diambil dari berbagai aspek yakni geografi, pemerintahan, sosial, transportasi, komunikasi, dan ekonomi. Adapun rincian variabel penelitiannya adalah luas kecamatan (X1), kelurahan/desa (X2), Penduduk (X3), SD/sederajat (X4), SLTP/sederajat (X5), SLTA/sederajat (X6), fasilitas kesehatan (X7), tempat ibadah (X8), jalan aspal (X9), menara telekomunikasi/tower (X10), koperasi (X11), dan took/kios (X12). Dua belas variabel yang diteliti tersebut disederhanakan ke dalam variabel baru berupa komponen utama. Hasil analisis komponen utama menunjukkan data potensi kecamatan di Kota Palu tahun 2017 terbentuk tiga komponen utama serta dapat menjelaskan varian data secara keseluruhan sebesar 89,98 persen
Support vector regression (SVR) model for forecasting number of passengers on domestic flights at Sultan Hasanudin airport Makassar
Sultan Hasanudin Airport is one of the largest airports in Indonesia, located in Makassar City. Its strategic location is the entrance of eastern Indonesia because it is a transit airport to other eastern regions of Indonesia. The number of airplane passengers at Sultan Hasanudin Airport has increased and decreased each time depending on certain moments. The increase in the number of passengers is closely related to the moments of religious holidays or year-end holidays. Whereas the decrease in the number of passengers was greatly influenced by the policy of rising plane ticket prices some time ago. Estimated number of passengers every month is needed in planning and making appropriate decisions from the government relating to fluctuations in the number of domestic flight passengers at Sultan Hasanudin Airport. Therefore, accurate forecasting techniques are needed to predict the number of passengers in the future. Because the data pattern of domestic flight passengers at Sultan Hasanudin Airport is not stationary, the ARIMA model can be used. However, the data on the number of passengers has a nonlinear data pattern, so we need a method that can overcome these problems. In this study the SVR model is used to overcome nonlinear patterns in the data. Compared to the ARIMA model, SVR has the advantage because it does not require stationary data assumptions as in ARIMA. The results of forecasting data on the number of domestic flight passengers at Sultan Hasanudin Airport using SVR show better accuracy or accuracy compared to the ARIMA model because it has a smaller MAPE value
Peramalan Jumlah Penumpang Berangkat Melalui Transportasi Udara di Sulawesi Tengah Menggunakan Support Vector Regression (SVR)
Sulawesi Tengah memiliki tujuh bandara sebagai akses transportasi udara keluar atau masuk. Jumlah penumpang berangkat menggunakan transportasi udara melalui ketujuh bandara tersebut mengalami fluktuasi setiap bulannya. Oleh karena itu, dibutuhkan teknik peramalan yang tepat untuk melihat fluktuasi dan meramalkan jumlah penumpang di masa depan. Hasil pengujian data jumlah penumpang berangkat melalui transportasi udara di Sulawesi Tengah menunjukkan bahwa data memiliki pola nonlinear sehingga diperlukan metode peramalan yang dapat mengatasi permasalahan pola data nonlinear. Dalam artikel ini digunakan model SVR. Hasil peramalan data jumlah penumpang berangkat melalui transportasi udara di Sulawesi Tengah menggunakan SVR menunjukkan akurasi peramalan yang baik dengan nilai MAPE 7,28 persen untuk data training dan 18,67 persen untuk data testing
Peramalan Harga Emas Saat Pandemi Covid-19 Menggunakan Model Hybrid Autoregressive Integrated Moving Average - Support Vector Regression
Gold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data