2,877 research outputs found

    PASSATA - Object oriented numerical simulation software for adaptive optics

    Get PDF
    We present the last version of the PyrAmid Simulator Software for Adaptive opTics Arcetri (PASSATA), an IDL and CUDA based object oriented software developed in the Adaptive Optics group of the Arcetri observatory for Monte-Carlo end-to-end adaptive optics simulations. The original aim of this software was to evaluate the performance of a single conjugate adaptive optics system for ground based telescope with a pyramid wavefront sensor. After some years of development, the current version of PASSATA is able to simulate several adaptive optics systems: single conjugate, multi conjugate and ground layer, with Shack Hartmann and Pyramid wavefront sensors. It can simulate from 8m to 40m class telescopes, with diffraction limited and resolved sources at finite or infinite distance from the pupil. The main advantages of this software are the versatility given by the object oriented approach and the speed given by the CUDA implementation of the most computational demanding routines. We describe the software with its last developments and present some examples of application.Comment: 9 pages, 2 figures, 3 tables. SPIE conference Astronomical Telescopes and Instrumentation, 26 June - 01 July 2016, Edinburgh, Scotland, United Kingdo

    Entropy production and coarse-graining in Markov processes

    Full text link
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Entropy production and coarse-graining in Markov processes

    Get PDF
    We study the large time fluctuations of entropy production in Markov processes. In particular, we consider the effect of a coarse-graining procedure which decimates {\em fast states} with respect to a given time threshold. Our results provide strong evidence that entropy production is not directly affected by this decimation, provided that it does not entirely remove loops carrying a net probability current. After the study of some examples of random walks on simple graphs, we apply our analysis to a network model for the kinesin cycle, which is an important biomolecular motor. A tentative general theory of these facts, based on Schnakenberg's network theory, is proposed.Comment: 18 pages, 13 figures, submitted for publicatio

    Infinite impulse response modal filtering in visible adaptive optics

    Full text link
    Diffraction limited resolution adaptive optics (AO) correction in visible wavelengths requires a high performance control. In this paper we investigate infinite impulse response filters that optimize the wavefront correction: we tested these algorithms through full numerical simulations of a single-conjugate AO system comprising an adaptive secondary mirror with 1127 actuators and a pyramid wavefront sensor (WFS). The actual practicability of the algorithms depends on both robustness and knowledge of the real system: errors in the system model may even worsen the performance. In particular we checked the robustness of the algorithms in different conditions, proving that the proposed method can reject both disturbance and calibration errors

    Hypertension and Acromegaly

    Get PDF

    Non-equilibrium fluctuations in a driven stochastic Lorentz gas

    Full text link
    We study the stationary state of a one-dimensional kinetic model where a probe particle is driven by an external field E and collides, elastically or inelastically, with a bath of particles at temperature T. We focus on the stationary distribution of the velocity of the particle, and of two estimates of the total entropy production \Delta s_tot. One is the entropy production of the medium \Delta s_m, which is equal to the energy exchanged with the scatterers, divided by a parameter \theta, coinciding with the particle temperature at E=0. The other is the work W done by the external field, again rescaled by \theta. At small E, a good collapse of the two distributions is found: in this case the two quantities also verify the Fluctuation Relation (FR), indicating that both are good approximations of \Delta s_tot. Differently, for large values of E, the fluctuations of W violate the FR, while \Delta s_m still verifies it.Comment: 6 pages, 4 figure

    Driven low density granular mixtures

    Full text link
    We study the steady state properties of a 2D granular mixture in the presence of energy driving by employing simple analytical estimates and Direct Simulation Monte Carlo. We adopt two different driving mechanisms: a) a homogeneous heat bath with friction and b) a vibrating boundary (thermal or harmonic) in the presence of gravity. The main findings are: the appearance of two different granular temperatures, one for each species; the existence of overpopulated tails in the velocity distribution functions and of non trivial spatial correlations indicating the spontaneous formation of cluster aggregates. In the case of a fluid subject to gravity and to a vibrating boundary, both densities and temperatures display non uniform profiles along the direction normal to the wall, in particular the temperature profiles are different for the two species while the temperature ratio is almost constant with the height. Finally, we obtained the velocity distributions at different heights and verified the non gaussianity of the resulting distributions.Comment: 19 pages, 12 figures, submitted for publicatio
    corecore