2,483 research outputs found

    Antimatter production in proton-proton and heavy-ion collisions at ultrarelativistic energies

    Full text link
    One of the striking features of particle production at high beam energies is the near equal abundance of matter and antimatter in the central rapidity region. In this paper we study how this symmetry is reached as the beam energy is increased. In particular, we quantify explicitly the energy dependence of the approach to matter/antimatter symmetry in proton-proton and in heavy-ion collisions. Expectations are presented also for the production of more complex forms of antimatter like antihypernuclei.Comment: 7 pages, 5 figure

    Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations

    Full text link
    Segregation of impurities to grain boundaries plays an important role in both the stability and macroscopic behavior of polycrystalline materials. The research objective in this work is to better characterize the energetics and length scales involved with the process of solute and impurity segregation to grain boundaries. Molecular dynamics simulations are used to calculate the segregation energies for carbon within multiple grain boundary sites over a database of 125 symmetric tilt grain boundaries in Fe. The simulation results show that the majority of atomic sites near the grain boundary have segregation energies lower than in the bulk. Moreover, depending on the boundary, the segregation energies approach the bulk value approximately 5-12 \AA\ away from the center of the grain boundary, providing an energetic length scale for carbon segregation. A subsequent data reduction and statistical representation of this dataset provides critical information such as about the mean segregation energy and the associated energy distributions for carbon atoms as a function of distance from the grain boundary, which quantitatively informs higher scale models with energetics and length scales necessary for capturing the segregation behavior of impurities in Fe. The significance of this research is the development of a methodology capable of ascertaining segregation energies over a wide range of grain boundary character (typical of that observed in polycrystalline materials), which herein has been applied to carbon segregation in a specific class of grain boundaries in iron

    Linear Momentum Density in Quasistatic Electromagnetic Systems

    Full text link
    We discuss a couple of simple quasistatic electromagnetic systems in which the density of electromagnetic linear momentum can be easily computed. The examples are also used to illustrate how the total electromagnetic linear momentum, which may also be calculated by using the vector potential, can be understood as a consequence of the violation of the action-reaction principle, because a non-null external force is required to maintain constant the mechanical linear momentum. We show how one can avoid the divergence in the interaction linear electromagnetic momentum of a system composed by an idealization often used in textbooks (an infinite straight current) and a point charge.Comment: 22 pages, 5 figures, to appear in Eur. J. Phy

    Transnational social capital: the socio‐spatialities of civil society

    Get PDF
    Civil society remains a contested concept, but one that is widely embedded in global development processes. Transnationalism within civil society scholarship is often described dichotomously, either through hierarchical dependency relations or as a more amorphous networked global civil society. These two contrasting spatial imaginaries produce very particular ideas about how transnational relations contribute to civil society. Drawing on empirical material from research with civil society organizations in Barbados and Grenada, in this article I contend that civil society groups use forms of transnational social capital in their work. This does not, however, resonate with the horizontal relations associated with grassroots globalization or vertical chains of dependence. These social relations are imbued with power and agency and are entangled in situated historical, geographical and personal contexts. I conclude that the diverse transnational social relations that are part of civil society activity offer hope and possibilities for continued civil society action in these unexpected spatial arrangements

    Adaptive response and enlargement of dynamic range

    Full text link
    Many membrane channels and receptors exhibit adaptive, or desensitized, response to a strong sustained input stimulus, often supported by protein activity-dependent inactivation. Adaptive response is thought to be related to various cellular functions such as homeostasis and enlargement of dynamic range by background compensation. Here we study the quantitative relation between adaptive response and background compensation within a modeling framework. We show that any particular type of adaptive response is neither sufficient nor necessary for adaptive enlargement of dynamic range. In particular a precise adaptive response, where system activity is maintained at a constant level at steady state, does not ensure a large dynamic range neither in input signal nor in system output. A general mechanism for input dynamic range enlargement can come about from the activity-dependent modulation of protein responsiveness by multiple biochemical modification, regardless of the type of adaptive response it induces. Therefore hierarchical biochemical processes such as methylation and phosphorylation are natural candidates to induce this property in signaling systems.Comment: Corrected typos, minor text revision

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Get PDF
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations

    Ruelle-Perron-Frobenius spectrum for Anosov maps

    Full text link
    We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (Information on the existence of an SRB measure, its smoothness properties and statistical properties readily follow from such a result.) In dimension d=2d=2 we show that the transfer operator associated to smooth random perturbations of the map is close, in a proper sense, to the unperturbed transfer operator. This allows to obtain easily very strong spectral stability results, which in turn imply spectral stability results for smooth deterministic perturbations as well. Finally, we are able to implement an Ulam type finite rank approximation scheme thus reducing the study of the spectral properties of the transfer operator to a finite dimensional problem.Comment: 58 pages, LaTe

    Ab-initio study of model guanine assemblies: The role of pi-pi coupling and band transport

    Full text link
    Several assemblies of guanine molecules are investigated by means of first-principle calculations. Such structures include stacked and hydrogen-bonded dimers, as well as vertical columns and planar ribbons, respectively, obtained by periodically replicating the dimers. Our results are in good agreement with experimental data for isolated molecules, isolated dimers, and periodic ribbons. For stacked dimers and columns, the stability is affected by the relative charge distribution of the pi orbitals in adjacent guanine molecules. pi-pi coupling in some stacked columns induces dispersive energy bands, while no dispersion is identified in the planar ribbons along the connections of hydrogen bonds. The implications for different materials comprised of guanine aggregates are discussed. The bandstructure of dispersive configurations may justify a contribution of band transport (Bloch type) in the conduction mechanism of deoxyguanosine fibres, while in DNA-like configurations band transport should be negligible.Comment: 21 pages, 6 figures, 3 tables, to be published in Phys. Rev.

    Topology and chiral symmetry breaking in SU(N) gauge theories

    Get PDF
    We study the low-lying eigenmodes of the lattice overlap Dirac operator for SU(N) gauge theories with N=2,3,4 and 5 colours. We define a fermionic topological charge from the zero-modes of this operator and show that, as N grows, any disagreement with the topological charge obtained by cooling the fields, becomes rapidly less likely. By examining the fields where there is a disagreement, we are able to show that the Dirac operator does not resolve instantons below a critical size of about rho = 2.5 a, but resolves the larger, more physical instantons. We investigate the local chirality of the near-zero modes and how it changes as we go to larger N. We observe that the local chirality of these modes, which is prominent for SU(2) and SU(3), becomes rapidly weaker for larger N and is consistent with disappearing entirely in the limit of N -> infinity. We find that this is not due to the observed disappearance of small instantons at larger N.Comment: 41 pages, 12 figures, RevTe

    Signatures of Quark-Gluon-Plasma formation in high energy heavy-ion collisions: A critical review

    Full text link
    A critical review on signatures of Quark-Gluon-Plasma formation is given and the current (1998) experimental status is discussed. After giving an introduction to the properties of QCD matter in both, equilibrium- and non-equilibrium theories, we focus on observables which may yield experimental evidence for QGP formation. For each individual observable the discussion is divided into three sections: first the connection between the respective observable and QGP formation in terms of the underlying theoretical concepts is given, then the relevant experimental results are reviewed and finally the current status concerning the interpretation of both, theory and experiment, is discussed. A comprehensive summary including an outlook towards RHIC is given in the final section.Comment: Topical review, submitted to Journal of Physics G: 68 pages, including 39 figures (revised version: only minor modifications, some references added
    corecore