112 research outputs found

    In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1

    Get PDF
    Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair

    Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition

    Get PDF
    Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanism of microtubule growth from the view of hydrolysis effects. Besides, the microtubule growth involves the closure of a curved sheet at its growing end. The curvature conversion also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical-chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. Firstly, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure, and the minimum conformational cap length that can stabilize the growth is demonstrated to be two dimers. Then, we show that the conformational cap can function independently of the GTP cap, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth.Comment: 23 pages, 7 figures. 2 supporting movies have not been uploaded due to the file type restriction

    Kinetochore fiber formation in animal somatic cells : dueling mechanisms come to a draw

    Get PDF
    Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosoma 114 (2005): 310-318, doi:10.1007/s00412-005-0028-2.The attachment to and movement of a chromosome on the mitotic spindle is mediated by the formation of a bundle of microtubules (MTs) that tethers the kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore fibers” (K-fibers) has been investigated for over 125 years. As noted in 1944 by Schrader, there are only three possible ways to form a K-fiber: either it a) grows from the pole until it contacts the kinetochore; b) grows directly from the kinetochore; or c) it forms as a result of an interaction between the pole and the chromosome. Since Schrader’s time it has been firmly established that K-fibers in centrosome-containing animal somatic cells form as kinetochores capture MTs growing from the spindle pole (route a). It is now similarly clear that in cells lacking centrosomes, including plants and many animal oocytes, K-fibers “self-assemble” from MTs generated by the chromosomes (route b). Can animal somatic cells form K-fibers in the absence of centrosomes by the “self-assembly” pathway? In 2000 the answer to this question was shown to be a resounding “yes”. With this result, the next question became whether the presence of a centrosome normally suppresses K-fiber self-assembly, or if this route works concurrently with centrosome-mediated K-fiber formation. This question, too, has recently been answered: observations on untreated live animal cells expressing GFP-tagged tubulin clearly show that kinetochores can nucleate the formation of their associated MTs in the presence of functional centrosomes. The concurrent operation of these two “dueling” routes for forming K-fibers in animals helps explain why the attachment of kinetochores and the maturation of K-fibers occur as quickly as it does on all chromosomes within a cell.The work is sponsored by NIH grant GMS 40198

    Queen mandibular pheromone: questions that remain to be resolved

    No full text
    The discovery of ‘queen substance’, and the subsequent identification and synthesis of keycomponents of queen mandibular pheromone, has been of significant importance to beekeepers and to thebeekeeping industry. Fifty years on, there is greater appreciation of the importance and complexity of queenpheromones, but many mysteries remain about the mechanisms through which pheromones operate. Thediscovery of sex pheromone communication in moths occurred within the same time period, but in this case,intense pressure to find better means of pest management resulted in a remarkable focusing of research activityon understanding pheromone detection mechanisms and the central processing of pheromone signals in themoth. We can benefit from this work and here, studies on moths are used to highlight some of the gaps in ourknowledge of pheromone communication in bees. A better understanding of pheromone communication inhoney bees promises improved strategies for the successful management of these extraordinary animals

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention
    corecore