17 research outputs found

    Improving delirium care in the intensive care unit: The design of a pragmatic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delirium prevalence in the intensive care unit (ICU) is high. Numerous psychotropic agents are used to manage delirium in the ICU with limited data regarding their efficacy or harms.</p> <p>Methods/Design</p> <p>This is a randomized controlled trial of 428 patients aged 18 and older suffering from delirium and admitted to the ICU of Wishard Memorial Hospital in Indianapolis. Subjects assigned to the intervention group will receive a multicomponent pharmacological management protocol for delirium (PMD) and those assigned to the control group will receive no change in their usual ICU care. The primary outcomes of the trial are (1) delirium severity as measured by the Delirium Rating Scale revised-98 (DRS-R-98) and (2) delirium duration as determined by the Confusion Assessment Method for the ICU (CAM-ICU). The PMD protocol targets the three neurotransmitter systems thought to be compromised in delirious patients: dopamine, acetylcholine, and gamma-aminobutyric acid. The PMD protocol will target the reduction of anticholinergic medications and benzodiazepines, and introduce a low-dose of haloperidol at 0.5-1 mg for 7 days. The protocol will be delivered by a combination of computer (artificial intelligence) and pharmacist (human intelligence) decision support system to increase adherence to the PMD protocol.</p> <p>Discussion</p> <p>The proposed study will evaluate the content and the delivery process of a multicomponent pharmacological management program for delirium in the ICU.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00842608">NCT00842608</a></p

    Nanoporous CuCo <inf>2</inf> O <inf>4</inf> nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis

    No full text
    Efficient and low‐cost multifunctional electrodes play a key role in improving the performance of energy conversion and storage devices. In this study, ultrathin nanoporous CuCo 2 O 4 nanosheets are synthesized on a nickel foam substrate using electrodeposition followed by air annealing. The CuCo 2 O 4 nanosheet electrode exhibits a high specific capacitance of 1473 F g ─1 at 1 A g ─1 with a capacity retention of ∼93% after 5000 cycles in 3 M KOH solution. It also works well as an efficient oxygen evolution reaction electrocatalyst, demonstrating an overpotential of 260 mV at 20 mA cm ─2 with a Tafel slope of ∼64 mV dec ─1 . in 1 M KOH solution, which is the lowest reported among other copper-cobalt based transition metal oxide catalysts. The catalyst is very stable at >20 mA cm ─2 for more than 25 h. The superior electrochemical performance of the CuCo 2 O 4 nanosheet electrode is due to the synergetic effect of the direct growth of 2D nanosheet structure and a large electrochemically active surface area associated with nanopores on the CuCo 2 O 4 nanosheet surface

    Meta-analysis identifies six new susceptibility loci for atrial fibrillation

    No full text
    Atrial fibrillation is a highly prevalent arrhythmia and a major risk factor for stroke, heart failure and death(1). We conducted a genome-wide association study (GWAS) in individuals of European ancestry, including 6,707 with and 52,426 without atrial fibrillation. Six new atrial fibrillation susceptibility loci were identified and replicated in an additional sample of individuals of European ancestry, including 5,381 subjects with and 10,030 subjects without atrial fibrillation (P < 5 x 10(-8)). Four of the loci identified in Europeans were further replicated in silico in a GWAS of Japanese individuals, including 843 individuals with and 3,350 individuals without atrial fibrillation. The identified loci implicate candidate genes that encode transcription factors related to cardiopulmonary development, cardiac-expressed ion channels and cell signaling molecules
    corecore