19 research outputs found

    Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications

    Get PDF
    Designing and fabricating hierarchical geometries for tissue engineering (TE) applications is the major challenge and also the biggest opportunity of regenerative medicine in recent years, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical examples due to the current inefficient standard medical procedures and the lack of fabrication techniques capable of building scaffolds with the required architecture in a cost and time effective way. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a system comprising both fibres and sacrificial microparticles. Polycaprolactone (PCL) and polyethylene glycol were respectively used as bulk and sacrificial biomaterials, leading to a bi-layered PCL scaffold which presented not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity compatible with cartilage TE approaches. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network. Additionally, likewise the natural anisotropic cartilage, the PCL scaffold was capable of inducing oriented cell-material interactions since the morphology, alignment and density of the chondrocytes changed relatively to the specific topographic cues of each electrospun layer.publishe

    Scaffolds for cartilage regeneration: to use or not to use?

    Get PDF
    Joint cartilage has been a significant focus on the field of tissue engineering and regenerative medicine (TERM) since its inception in the 1980s. Represented by only one cell type, cartilage has been a simple tissue that is thought to be straightforward to deal with. After three decades, engineering cartilage has proven to be anything but easy. With the demographic shift in the distribution of world population towards ageing, it is expected that there is a growing need for more effective options for joint restoration and repair. Despite the increasing understanding of the factors governing cartilage development, there is still a lot to do to bridge the gap from bench to bedside. Dedicated methods to regenerate reliable articular cartilage that would be equivalent to the original tissue are still lacking. The use of cells, scaffolds and signalling factors has always been central to the TERM. However, without denying the importance of cells and signalling factors, the question posed in this chapter is whether the answer would come from the methods to use or not to use scaffold for cartilage TERM. This paper presents some efforts in TERM area and proposes a solution that will transpire from the ongoing attempts to understand certain aspects of cartilage development, degeneration and regeneration. While an ideal formulation for cartilage regeneration has yet to be resolved, it is felt that scaffold is still needed for cartilage TERM for years to come

    Präklinische Studie zur Nasenrückenaugmentation durch ein mit 3D-Druck hergestelltes Biomaterial

    No full text

    Oberfläche versus Feinstruktur: wie die Wachstumsfläche die Differenzierung beeinflusst

    No full text

    Die mikrochirurgische Gefäßanastomose ist erlernbar!

    No full text

    Morphometrische Quantifizierung der Adipogenese in vivo

    No full text
    corecore